Cargando…
Volumetric modulated arc therapy dose prediction and deliverable treatment plan generation for prostate cancer patients using a densely connected deep learning model
BACKGROUND AND PURPOSE: Radiation therapy treatment planning is a manual, time-consuming task that might be accelerated using machine learning algorithms. In this study, we aimed to evaluate if a triplet-based deep learning model can predict volumetric modulated arc therapy (VMAT) dose distributions...
Autores principales: | Lempart, Michael, Benedek, Hunor, Jamtheim Gustafsson, Christian, Nilsson, Mikael, Eliasson, Niklas, Bäck, Sven, Munck af Rosenschöld, Per, Olsson, Lars E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353474/ https://www.ncbi.nlm.nih.gov/pubmed/34401537 http://dx.doi.org/10.1016/j.phro.2021.07.008 |
Ejemplares similares
-
Pelvic U-Net: multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network
por: Lempart, Michael, et al.
Publicado: (2022) -
Predicting deliverability of volumetric‐modulated arc therapy (VMAT) plans using aperture complexity analysis
por: Younge, Kelly C., et al.
Publicado: (2016) -
Deep learning‐based classification of organs at risk and delineation guideline in pelvic cancer radiation therapy
por: Lempart, Michael, et al.
Publicado: (2023) -
Multidimensional correlation among plan complexity, quality and deliverability parameters for volumetric-modulated arc therapy using canonical correlation analysis
por: Shen, Lanxiao, et al.
Publicado: (2018) -
MRI-only radiotherapy from an economic perspective: Can new techniques in prostate cancer treatment be cost saving?
por: Persson, Emilia, et al.
Publicado: (2022)