Cargando…
SCAPTURE: a deep learning-embedded pipeline that captures polyadenylation information from 3′ tag-based RNA-seq of single cells
Single-cell RNA-seq (scRNA-seq) profiles gene expression with high resolution. Here, we develop a stepwise computational method-called SCAPTURE to identify, evaluate, and quantify cleavage and polyadenylation sites (PASs) from 3′ tag-based scRNA-seq. SCAPTURE detects PASs de novo in single cells wit...
Autores principales: | Li, Guo-Wei, Nan, Fang, Yuan, Guo-Hua, Liu, Chu-Xiao, Liu, Xindong, Chen, Ling-Ling, Tian, Bin, Yang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353616/ https://www.ncbi.nlm.nih.gov/pubmed/34376223 http://dx.doi.org/10.1186/s13059-021-02437-5 |
Ejemplares similares
-
Accurate transcriptome-wide identification and quantification of alternative polyadenylation from RNA-seq data with APAIQ
por: Long, Yongkang, et al.
Publicado: (2023) -
A benchmark for RNA-seq quantification pipelines
por: Teng, Mingxiang, et al.
Publicado: (2016) -
MMAPPR: Mutation Mapping Analysis Pipeline for Pooled RNA-seq
por: Hill, Jonathon T., et al.
Publicado: (2013) -
QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data
por: Ha, Kevin C. H., et al.
Publicado: (2018) -
DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning
por: Li, Zhongxiao, et al.
Publicado: (2022)