Cargando…

Synergistic Catalysis of Tandem Michael Addition/Enantioselective Protonation Reactions by an Artificial Enzyme

[Image: see text] Enantioselective protonation is conceptually one of the most attractive methods to generate an α-chiral center. However, enantioselective protonation presents major challenges, especially in water. Herein, we report a tandem Michael addition/enantioselective protonation reaction ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Zhi, Roelfes, Gerard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353628/
https://www.ncbi.nlm.nih.gov/pubmed/34386272
http://dx.doi.org/10.1021/acscatal.1c02298
Descripción
Sumario:[Image: see text] Enantioselective protonation is conceptually one of the most attractive methods to generate an α-chiral center. However, enantioselective protonation presents major challenges, especially in water. Herein, we report a tandem Michael addition/enantioselective protonation reaction catalyzed by an artificial enzyme employing two abiological catalytic sites in a synergistic fashion: a genetically encoded noncanonical p-aminophenylalanine residue and a Lewis acid Cu(II) complex. The exquisite stereocontrol achieved in the protonation of the transient enamine intermediate is illustrated by up to >20:1 dr and >99% ee of the product. These results illustrate the potential of exploiting synergistic catalysis in artificial enzymes for challenging reactions.