Cargando…
A smartphone-based online system for fall detection with alert notifications and contextual information of real-life falls
BACKGROUND: Falls are a leading cause of accidental deaths and injuries worldwide. The risk of falling is especially high for individuals suffering from balance impairments. Retrospective surveys and studies of simulated falling in lab conditions are frequently used and are informative, but prospect...
Autores principales: | Harari, Yaar, Shawen, Nicholas, Mummidisetty, Chaithanya K., Albert, Mark V., Kording, Konrad P., Jayaraman, Arun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353784/ https://www.ncbi.nlm.nih.gov/pubmed/34376199 http://dx.doi.org/10.1186/s12984-021-00918-z |
Ejemplares similares
-
Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
Addendum of: Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
Wearable airbag technology and machine learned models to mitigate falls after stroke
por: Botonis, Olivia K., et al.
Publicado: (2022) -
Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting
por: O'Brien, Megan K, et al.
Publicado: (2017) -
Fall Classification by Machine Learning Using Mobile Phones
por: Albert, Mark V., et al.
Publicado: (2012)