Cargando…
Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care
BACKGROUND: Acute kidney injury (AKI) in pediatric critical care patients is diagnosed using elevated serum creatinine, which occurs only after kidney impairment. There are no treatments other than supportive care for AKI once it has developed, so it is important to identify patients at risk to prev...
Autores principales: | Dong, Junzi, Feng, Ting, Thapa-Chhetry, Binod, Cho, Byung Gu, Shum, Tunu, Inwald, David P., Newth, Christopher J. L., Vaidya, Vinay U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353807/ https://www.ncbi.nlm.nih.gov/pubmed/34376222 http://dx.doi.org/10.1186/s13054-021-03724-0 |
Ejemplares similares
-
Continuous noninvasive blood gas estimation in critically ill pediatric patients with respiratory failure
por: Dong, Junzi, et al.
Publicado: (2022) -
Measuring Criterion Validity of Microinteraction Ecological Momentary Assessment (Micro-EMA): Exploratory Pilot Study With Physical Activity Measurement
por: Ponnada, Aditya, et al.
Publicado: (2021) -
2416: A machine learning pipeline to predict acute kidney injury (AKI) in patients without AKI in their most recent hospitalization
por: Weisenthal, Samuel, et al.
Publicado: (2018) -
Acute Kidney Injury (AKI)
por: Malhotra, Ajai
Publicado: (2017) -
A clinical prediction model to identify patients at high risk of hemodynamic instability in the pediatric intensive care unit
por: Potes, Cristhian, et al.
Publicado: (2017)