Cargando…
RFCell: A Gene Selection Approach for scRNA-seq Clustering Based on Permutation and Random Forest
In recent years, the application of single cell RNA-seq (scRNA-seq) has become more and more popular in fields such as biology and medical research. Analyzing scRNA-seq data can discover complex cell populations and infer single-cell trajectories in cell development. Clustering is one of the most im...
Autores principales: | Zhao, Yuan, Fang, Zhao-Yu, Lin, Cui-Xiang, Deng, Chao, Xu, Yun-Pei, Li, Hong-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354212/ https://www.ncbi.nlm.nih.gov/pubmed/34386033 http://dx.doi.org/10.3389/fgene.2021.665843 |
Ejemplares similares
-
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023) -
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder
por: Zhao, Jianping, et al.
Publicado: (2021) -
Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2019) -
D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data
por: Liu, Guoyun, et al.
Publicado: (2022)