Cargando…
Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders
Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354373/ https://www.ncbi.nlm.nih.gov/pubmed/32889528 http://dx.doi.org/10.1093/brain/awaa217 |
_version_ | 1783736577619394560 |
---|---|
author | Mencacci, Niccolò E Reynolds, Regina H Ruiz, Sonia Garcia Vandrovcova, Jana Forabosco, Paola Sánchez-Ferrer, Alvaro Volpato, Viola Weale, Michael E Bhatia, Kailash P Webber, Caleb Hardy, John Botía, Juan A Ryten, Mina |
author_facet | Mencacci, Niccolò E Reynolds, Regina H Ruiz, Sonia Garcia Vandrovcova, Jana Forabosco, Paola Sánchez-Ferrer, Alvaro Volpato, Viola Weale, Michael E Bhatia, Kailash P Webber, Caleb Hardy, John Botía, Juan A Ryten, Mina |
author_sort | Mencacci, Niccolò E |
collection | PubMed |
description | Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in patients with dystonia. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders. Here we applied an unbiased systems-biology approach to explore the cellular specificity of all currently known dystonia-associated genes, predict their functional relationships, and test whether dystonia and neuropsychiatric disorders share a genetic relationship. To determine the cellular specificity of dystonia-associated genes in the brain, single-nuclear transcriptomic data derived from mouse brain was used together with expression-weighted cell-type enrichment. To identify functional relationships among dystonia-associated genes, we determined the enrichment of these genes in co-expression networks constructed from 10 human brain regions. Stratified linkage-disequilibrium score regression was used to test whether co-expression modules enriched for dystonia-associated genes significantly contribute to the heritability of anxiety, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Parkinson’s disease. Dystonia-associated genes were significantly enriched in adult nigral dopaminergic neurons and striatal medium spiny neurons. Furthermore, 4 of 220 gene co-expression modules tested were significantly enriched for the dystonia-associated genes. The identified modules were derived from the substantia nigra, putamen, frontal cortex, and white matter, and were all significantly enriched for genes associated with synaptic function. Finally, we demonstrate significant enrichments of the heritability of major depressive disorder, obsessive-compulsive disorder and schizophrenia within the putamen, frontal cortex and white matter modules, and nominal enrichment of the heritability of Parkinson’s disease within the substantia nigra module. In conclusion, multiple dystonia-associated genes interact and contribute to pathogenesis likely through dysregulation of synaptic signalling in striatal medium spiny neurons, adult nigral dopaminergic neurons and frontal cortical neurons. Furthermore, the enrichment of the heritability of psychiatric disorders in the co-expression modules enriched for dystonia-associated genes indicates that psychiatric symptoms associated with dystonia are likely to be intrinsic to its pathophysiology. |
format | Online Article Text |
id | pubmed-8354373 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-83543732021-08-11 Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders Mencacci, Niccolò E Reynolds, Regina H Ruiz, Sonia Garcia Vandrovcova, Jana Forabosco, Paola Sánchez-Ferrer, Alvaro Volpato, Viola Weale, Michael E Bhatia, Kailash P Webber, Caleb Hardy, John Botía, Juan A Ryten, Mina Brain Original Articles Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in patients with dystonia. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders. Here we applied an unbiased systems-biology approach to explore the cellular specificity of all currently known dystonia-associated genes, predict their functional relationships, and test whether dystonia and neuropsychiatric disorders share a genetic relationship. To determine the cellular specificity of dystonia-associated genes in the brain, single-nuclear transcriptomic data derived from mouse brain was used together with expression-weighted cell-type enrichment. To identify functional relationships among dystonia-associated genes, we determined the enrichment of these genes in co-expression networks constructed from 10 human brain regions. Stratified linkage-disequilibrium score regression was used to test whether co-expression modules enriched for dystonia-associated genes significantly contribute to the heritability of anxiety, major depressive disorder, obsessive-compulsive disorder, schizophrenia, and Parkinson’s disease. Dystonia-associated genes were significantly enriched in adult nigral dopaminergic neurons and striatal medium spiny neurons. Furthermore, 4 of 220 gene co-expression modules tested were significantly enriched for the dystonia-associated genes. The identified modules were derived from the substantia nigra, putamen, frontal cortex, and white matter, and were all significantly enriched for genes associated with synaptic function. Finally, we demonstrate significant enrichments of the heritability of major depressive disorder, obsessive-compulsive disorder and schizophrenia within the putamen, frontal cortex and white matter modules, and nominal enrichment of the heritability of Parkinson’s disease within the substantia nigra module. In conclusion, multiple dystonia-associated genes interact and contribute to pathogenesis likely through dysregulation of synaptic signalling in striatal medium spiny neurons, adult nigral dopaminergic neurons and frontal cortical neurons. Furthermore, the enrichment of the heritability of psychiatric disorders in the co-expression modules enriched for dystonia-associated genes indicates that psychiatric symptoms associated with dystonia are likely to be intrinsic to its pathophysiology. Oxford University Press 2020-08-21 /pmc/articles/PMC8354373/ /pubmed/32889528 http://dx.doi.org/10.1093/brain/awaa217 Text en © The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Mencacci, Niccolò E Reynolds, Regina H Ruiz, Sonia Garcia Vandrovcova, Jana Forabosco, Paola Sánchez-Ferrer, Alvaro Volpato, Viola Weale, Michael E Bhatia, Kailash P Webber, Caleb Hardy, John Botía, Juan A Ryten, Mina Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders |
title | Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders |
title_full | Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders |
title_fullStr | Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders |
title_full_unstemmed | Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders |
title_short | Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders |
title_sort | dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354373/ https://www.ncbi.nlm.nih.gov/pubmed/32889528 http://dx.doi.org/10.1093/brain/awaa217 |
work_keys_str_mv | AT mencacciniccoloe dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT reynoldsreginah dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT ruizsoniagarcia dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT vandrovcovajana dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT foraboscopaola dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT sanchezferreralvaro dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT volpatoviola dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT wealemichaele dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT bhatiakailashp dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT webbercaleb dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT hardyjohn dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT botiajuana dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders AT rytenmina dystoniagenesfunctionallyconvergeinspecificneuronsandshareneurobiologywithpsychiatricdisorders |