Cargando…
Diagnostic performance of deep-learning-based screening methods for diabetic retinopathy in primary care—A meta-analysis
BACKGROUND: Diabetic retinopathy (DR) affects 10–24% of patients with diabetes mellitus type 1 or 2 in the primary care (PC) sector. As early detection is crucial for treatment, deep learning screening methods in PC setting could potentially aid in an accurate and timely diagnosis. PURPOSE: The purp...
Autores principales: | Wewetzer, Larisa, Held, Linda A., Steinhäuser, Jost |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354436/ https://www.ncbi.nlm.nih.gov/pubmed/34375355 http://dx.doi.org/10.1371/journal.pone.0255034 |
Ejemplares similares
-
Determinants of the implementation of artificial intelligence-based
screening for diabetic retinopathy—a cross-sectional study with general
practitioners in Germany
por: Wewetzer, Larisa, et al.
Publicado: (2023) -
Automated diabetic retinopathy screening for primary care settings using deep learning
por: Bhuiyan, Alauddin, et al.
Publicado: (2021) -
Application of deep learning algorithms for diabetic retinopathy screening
por: Poschkamp, Broder, et al.
Publicado: (2022) -
Review on diabetic retinopathy with deep learning methods
por: Shekar, Shreya, et al.
Publicado: (2021) -
Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques
por: Farooq, Muhammad Shoaib, et al.
Publicado: (2022)