Cargando…

The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates

Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of S...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Gang, Gallant, Joseph, Zheng, Jian, Massey, Christopher, Shi, Ke, Tai, Wanbo, Odle, Abby, Vickers, Molly, Shang, Jian, Wan, Yushun, Du, Lanying, Aihara, Hideki, Perlman, Stanley, LeBeau, Aaron, Li, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354634/
https://www.ncbi.nlm.nih.gov/pubmed/34338634
http://dx.doi.org/10.7554/eLife.64815
_version_ 1783736630890201088
author Ye, Gang
Gallant, Joseph
Zheng, Jian
Massey, Christopher
Shi, Ke
Tai, Wanbo
Odle, Abby
Vickers, Molly
Shang, Jian
Wan, Yushun
Du, Lanying
Aihara, Hideki
Perlman, Stanley
LeBeau, Aaron
Li, Fang
author_facet Ye, Gang
Gallant, Joseph
Zheng, Jian
Massey, Christopher
Shi, Ke
Tai, Wanbo
Odle, Abby
Vickers, Molly
Shang, Jian
Wan, Yushun
Du, Lanying
Aihara, Hideki
Perlman, Stanley
LeBeau, Aaron
Li, Fang
author_sort Ye, Gang
collection PubMed
description Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor angiotensin-converting enzyme 2 (ACE2). The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19.
format Online
Article
Text
id pubmed-8354634
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-83546342021-08-11 The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates Ye, Gang Gallant, Joseph Zheng, Jian Massey, Christopher Shi, Ke Tai, Wanbo Odle, Abby Vickers, Molly Shang, Jian Wan, Yushun Du, Lanying Aihara, Hideki Perlman, Stanley LeBeau, Aaron Li, Fang eLife Microbiology and Infectious Disease Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor angiotensin-converting enzyme 2 (ACE2). The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19. eLife Sciences Publications, Ltd 2021-08-02 /pmc/articles/PMC8354634/ /pubmed/34338634 http://dx.doi.org/10.7554/eLife.64815 Text en © 2021, Ye et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Microbiology and Infectious Disease
Ye, Gang
Gallant, Joseph
Zheng, Jian
Massey, Christopher
Shi, Ke
Tai, Wanbo
Odle, Abby
Vickers, Molly
Shang, Jian
Wan, Yushun
Du, Lanying
Aihara, Hideki
Perlman, Stanley
LeBeau, Aaron
Li, Fang
The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates
title The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates
title_full The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates
title_fullStr The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates
title_full_unstemmed The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates
title_short The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates
title_sort development of nanosota-1 as anti-sars-cov-2 nanobody drug candidates
topic Microbiology and Infectious Disease
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354634/
https://www.ncbi.nlm.nih.gov/pubmed/34338634
http://dx.doi.org/10.7554/eLife.64815
work_keys_str_mv AT yegang thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT gallantjoseph thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT zhengjian thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT masseychristopher thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT shike thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT taiwanbo thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT odleabby thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT vickersmolly thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT shangjian thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT wanyushun thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT dulanying thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT aiharahideki thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT perlmanstanley thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT lebeauaaron thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT lifang thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates
AT yegang developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT gallantjoseph developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT zhengjian developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT masseychristopher developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT shike developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT taiwanbo developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT odleabby developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT vickersmolly developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT shangjian developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT wanyushun developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT dulanying developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT aiharahideki developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT perlmanstanley developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT lebeauaaron developmentofnanosota1asantisarscov2nanobodydrugcandidates
AT lifang developmentofnanosota1asantisarscov2nanobodydrugcandidates