Cargando…
The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates
Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of S...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354634/ https://www.ncbi.nlm.nih.gov/pubmed/34338634 http://dx.doi.org/10.7554/eLife.64815 |
_version_ | 1783736630890201088 |
---|---|
author | Ye, Gang Gallant, Joseph Zheng, Jian Massey, Christopher Shi, Ke Tai, Wanbo Odle, Abby Vickers, Molly Shang, Jian Wan, Yushun Du, Lanying Aihara, Hideki Perlman, Stanley LeBeau, Aaron Li, Fang |
author_facet | Ye, Gang Gallant, Joseph Zheng, Jian Massey, Christopher Shi, Ke Tai, Wanbo Odle, Abby Vickers, Molly Shang, Jian Wan, Yushun Du, Lanying Aihara, Hideki Perlman, Stanley LeBeau, Aaron Li, Fang |
author_sort | Ye, Gang |
collection | PubMed |
description | Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor angiotensin-converting enzyme 2 (ACE2). The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19. |
format | Online Article Text |
id | pubmed-8354634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-83546342021-08-11 The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates Ye, Gang Gallant, Joseph Zheng, Jian Massey, Christopher Shi, Ke Tai, Wanbo Odle, Abby Vickers, Molly Shang, Jian Wan, Yushun Du, Lanying Aihara, Hideki Perlman, Stanley LeBeau, Aaron Li, Fang eLife Microbiology and Infectious Disease Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor angiotensin-converting enzyme 2 (ACE2). The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19. eLife Sciences Publications, Ltd 2021-08-02 /pmc/articles/PMC8354634/ /pubmed/34338634 http://dx.doi.org/10.7554/eLife.64815 Text en © 2021, Ye et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Microbiology and Infectious Disease Ye, Gang Gallant, Joseph Zheng, Jian Massey, Christopher Shi, Ke Tai, Wanbo Odle, Abby Vickers, Molly Shang, Jian Wan, Yushun Du, Lanying Aihara, Hideki Perlman, Stanley LeBeau, Aaron Li, Fang The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates |
title | The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates |
title_full | The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates |
title_fullStr | The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates |
title_full_unstemmed | The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates |
title_short | The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates |
title_sort | development of nanosota-1 as anti-sars-cov-2 nanobody drug candidates |
topic | Microbiology and Infectious Disease |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354634/ https://www.ncbi.nlm.nih.gov/pubmed/34338634 http://dx.doi.org/10.7554/eLife.64815 |
work_keys_str_mv | AT yegang thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT gallantjoseph thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT zhengjian thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT masseychristopher thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT shike thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT taiwanbo thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT odleabby thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT vickersmolly thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT shangjian thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT wanyushun thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT dulanying thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT aiharahideki thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT perlmanstanley thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT lebeauaaron thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT lifang thedevelopmentofnanosota1asantisarscov2nanobodydrugcandidates AT yegang developmentofnanosota1asantisarscov2nanobodydrugcandidates AT gallantjoseph developmentofnanosota1asantisarscov2nanobodydrugcandidates AT zhengjian developmentofnanosota1asantisarscov2nanobodydrugcandidates AT masseychristopher developmentofnanosota1asantisarscov2nanobodydrugcandidates AT shike developmentofnanosota1asantisarscov2nanobodydrugcandidates AT taiwanbo developmentofnanosota1asantisarscov2nanobodydrugcandidates AT odleabby developmentofnanosota1asantisarscov2nanobodydrugcandidates AT vickersmolly developmentofnanosota1asantisarscov2nanobodydrugcandidates AT shangjian developmentofnanosota1asantisarscov2nanobodydrugcandidates AT wanyushun developmentofnanosota1asantisarscov2nanobodydrugcandidates AT dulanying developmentofnanosota1asantisarscov2nanobodydrugcandidates AT aiharahideki developmentofnanosota1asantisarscov2nanobodydrugcandidates AT perlmanstanley developmentofnanosota1asantisarscov2nanobodydrugcandidates AT lebeauaaron developmentofnanosota1asantisarscov2nanobodydrugcandidates AT lifang developmentofnanosota1asantisarscov2nanobodydrugcandidates |