Cargando…

Using the Goldilocks Principle to model coral ecosystem engineering

The occurrence and proliferation of reef-forming corals is of vast importance in terms of the biodiversity they support and the ecosystem services they provide. The complex three-dimensional structures engineered by corals are comprised of both live and dead coral, and the function, growth and stabi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hennige, S. J., Larsson, A. I., Orejas, C., Gori, A., De Clippele, L. H., Lee, Y. C., Jimeno, G., Georgoulas, K., Kamenos, N. A., Roberts, J. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354746/
https://www.ncbi.nlm.nih.gov/pubmed/34375552
http://dx.doi.org/10.1098/rspb.2021.1260
_version_ 1783736644143153152
author Hennige, S. J.
Larsson, A. I.
Orejas, C.
Gori, A.
De Clippele, L. H.
Lee, Y. C.
Jimeno, G.
Georgoulas, K.
Kamenos, N. A.
Roberts, J. M.
author_facet Hennige, S. J.
Larsson, A. I.
Orejas, C.
Gori, A.
De Clippele, L. H.
Lee, Y. C.
Jimeno, G.
Georgoulas, K.
Kamenos, N. A.
Roberts, J. M.
author_sort Hennige, S. J.
collection PubMed
description The occurrence and proliferation of reef-forming corals is of vast importance in terms of the biodiversity they support and the ecosystem services they provide. The complex three-dimensional structures engineered by corals are comprised of both live and dead coral, and the function, growth and stability of these systems will depend on the ratio of both. To model how the ratio of live : dead coral may change, the ‘Goldilocks Principle’ can be used, where organisms will only flourish if conditions are ‘just right’. With data from particle imaging velocimetry and numerical smooth particle hydrodynamic modelling with two simple rules, we demonstrate how this principle can be applied to a model reef system, and how corals are effectively optimizing their own local flow requirements through habitat engineering. Building on advances here, these approaches can be used in conjunction with numerical modelling to investigate the growth and mortality of biodiversity supporting framework in present-day and future coral reef structures.
format Online
Article
Text
id pubmed-8354746
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-83547462021-08-17 Using the Goldilocks Principle to model coral ecosystem engineering Hennige, S. J. Larsson, A. I. Orejas, C. Gori, A. De Clippele, L. H. Lee, Y. C. Jimeno, G. Georgoulas, K. Kamenos, N. A. Roberts, J. M. Proc Biol Sci Ecology The occurrence and proliferation of reef-forming corals is of vast importance in terms of the biodiversity they support and the ecosystem services they provide. The complex three-dimensional structures engineered by corals are comprised of both live and dead coral, and the function, growth and stability of these systems will depend on the ratio of both. To model how the ratio of live : dead coral may change, the ‘Goldilocks Principle’ can be used, where organisms will only flourish if conditions are ‘just right’. With data from particle imaging velocimetry and numerical smooth particle hydrodynamic modelling with two simple rules, we demonstrate how this principle can be applied to a model reef system, and how corals are effectively optimizing their own local flow requirements through habitat engineering. Building on advances here, these approaches can be used in conjunction with numerical modelling to investigate the growth and mortality of biodiversity supporting framework in present-day and future coral reef structures. The Royal Society 2021-08-11 2021-08-11 /pmc/articles/PMC8354746/ /pubmed/34375552 http://dx.doi.org/10.1098/rspb.2021.1260 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Ecology
Hennige, S. J.
Larsson, A. I.
Orejas, C.
Gori, A.
De Clippele, L. H.
Lee, Y. C.
Jimeno, G.
Georgoulas, K.
Kamenos, N. A.
Roberts, J. M.
Using the Goldilocks Principle to model coral ecosystem engineering
title Using the Goldilocks Principle to model coral ecosystem engineering
title_full Using the Goldilocks Principle to model coral ecosystem engineering
title_fullStr Using the Goldilocks Principle to model coral ecosystem engineering
title_full_unstemmed Using the Goldilocks Principle to model coral ecosystem engineering
title_short Using the Goldilocks Principle to model coral ecosystem engineering
title_sort using the goldilocks principle to model coral ecosystem engineering
topic Ecology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354746/
https://www.ncbi.nlm.nih.gov/pubmed/34375552
http://dx.doi.org/10.1098/rspb.2021.1260
work_keys_str_mv AT hennigesj usingthegoldilocksprincipletomodelcoralecosystemengineering
AT larssonai usingthegoldilocksprincipletomodelcoralecosystemengineering
AT orejasc usingthegoldilocksprincipletomodelcoralecosystemengineering
AT goria usingthegoldilocksprincipletomodelcoralecosystemengineering
AT declippelelh usingthegoldilocksprincipletomodelcoralecosystemengineering
AT leeyc usingthegoldilocksprincipletomodelcoralecosystemengineering
AT jimenog usingthegoldilocksprincipletomodelcoralecosystemengineering
AT georgoulask usingthegoldilocksprincipletomodelcoralecosystemengineering
AT kamenosna usingthegoldilocksprincipletomodelcoralecosystemengineering
AT robertsjm usingthegoldilocksprincipletomodelcoralecosystemengineering