Cargando…
Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition
Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of U...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer India
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354842/ https://www.ncbi.nlm.nih.gov/pubmed/34393390 http://dx.doi.org/10.1007/s12298-021-01046-7 |
_version_ | 1783736661566291968 |
---|---|
author | Tripathi, Deepika Meena, Ram Prasad Pandey-Rai, Shashi |
author_facet | Tripathi, Deepika Meena, Ram Prasad Pandey-Rai, Shashi |
author_sort | Tripathi, Deepika |
collection | PubMed |
description | Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of UV-B on the physiology and secondary metabolism of Withania coagulans, which is an important ayurvedic plant with high anti-diabetic potential. Results showed that in-vitro UV-B exposure negatively influenced chlorophyll content and photosynthetic machinery. However, Fv/Fm ratio was found non-significantly altered up to 3 h UV-B exposure. The maximum lipid peroxidation level was recorded with 46.8% higher malondialdehyde content in the plants supplemented with 5 h UV-B radiation, that was indicated the oxidative stress in W. coagulans. Conversely, UV-B treatment significantly increased the plant's stress protective compounds like carotenoids, anthocyanin, phenol and proline, in W. coagulans. Free radical scavenging activity was also significantly increased ~ 18% than the control with 3 h UV-B treatment. The maximum antioxidative enzymes activities were observed with the short-term (up to 3 h) UV-B treatment. Specifically, UV-B radiation exposure significantly increased the content of withaferin A and withanolide A in W. coagulans with maximum 1.38 and 3.42-folds, respectively. Additionally, withanolides biosynthesis related genes transcript levels were found over-expressed under the response of UV-B elicitation. The acquired results suggested that short-term UV-B supplementation triggers secondary metabolism along with combating oxidative stress via improving the antioxidative defense system in W. coagulans. Also, UV-B can be used as an efficient abiotic elicitor to increase pharmaceutical compounds (withanolides) production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01046-7. |
format | Online Article Text |
id | pubmed-8354842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer India |
record_format | MEDLINE/PubMed |
spelling | pubmed-83548422021-08-11 Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition Tripathi, Deepika Meena, Ram Prasad Pandey-Rai, Shashi Physiol Mol Biol Plants Research Article Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of UV-B on the physiology and secondary metabolism of Withania coagulans, which is an important ayurvedic plant with high anti-diabetic potential. Results showed that in-vitro UV-B exposure negatively influenced chlorophyll content and photosynthetic machinery. However, Fv/Fm ratio was found non-significantly altered up to 3 h UV-B exposure. The maximum lipid peroxidation level was recorded with 46.8% higher malondialdehyde content in the plants supplemented with 5 h UV-B radiation, that was indicated the oxidative stress in W. coagulans. Conversely, UV-B treatment significantly increased the plant's stress protective compounds like carotenoids, anthocyanin, phenol and proline, in W. coagulans. Free radical scavenging activity was also significantly increased ~ 18% than the control with 3 h UV-B treatment. The maximum antioxidative enzymes activities were observed with the short-term (up to 3 h) UV-B treatment. Specifically, UV-B radiation exposure significantly increased the content of withaferin A and withanolide A in W. coagulans with maximum 1.38 and 3.42-folds, respectively. Additionally, withanolides biosynthesis related genes transcript levels were found over-expressed under the response of UV-B elicitation. The acquired results suggested that short-term UV-B supplementation triggers secondary metabolism along with combating oxidative stress via improving the antioxidative defense system in W. coagulans. Also, UV-B can be used as an efficient abiotic elicitor to increase pharmaceutical compounds (withanolides) production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01046-7. Springer India 2021-08-11 2021-08 /pmc/articles/PMC8354842/ /pubmed/34393390 http://dx.doi.org/10.1007/s12298-021-01046-7 Text en © Prof. H.S. Srivastava Foundation for Science and Society 2021 |
spellingShingle | Research Article Tripathi, Deepika Meena, Ram Prasad Pandey-Rai, Shashi Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition |
title | Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition |
title_full | Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition |
title_fullStr | Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition |
title_full_unstemmed | Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition |
title_short | Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition |
title_sort | short term uv-b radiation mediated modulation of physiological traits and withanolides production in withania coagulans (l.) dunal under in-vitro condition |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354842/ https://www.ncbi.nlm.nih.gov/pubmed/34393390 http://dx.doi.org/10.1007/s12298-021-01046-7 |
work_keys_str_mv | AT tripathideepika shorttermuvbradiationmediatedmodulationofphysiologicaltraitsandwithanolidesproductioninwithaniacoagulansldunalunderinvitrocondition AT meenaramprasad shorttermuvbradiationmediatedmodulationofphysiologicaltraitsandwithanolidesproductioninwithaniacoagulansldunalunderinvitrocondition AT pandeyraishashi shorttermuvbradiationmediatedmodulationofphysiologicaltraitsandwithanolidesproductioninwithaniacoagulansldunalunderinvitrocondition |