Cargando…

Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition

Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of U...

Descripción completa

Detalles Bibliográficos
Autores principales: Tripathi, Deepika, Meena, Ram Prasad, Pandey-Rai, Shashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer India 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354842/
https://www.ncbi.nlm.nih.gov/pubmed/34393390
http://dx.doi.org/10.1007/s12298-021-01046-7
_version_ 1783736661566291968
author Tripathi, Deepika
Meena, Ram Prasad
Pandey-Rai, Shashi
author_facet Tripathi, Deepika
Meena, Ram Prasad
Pandey-Rai, Shashi
author_sort Tripathi, Deepika
collection PubMed
description Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of UV-B on the physiology and secondary metabolism of Withania coagulans, which is an important ayurvedic plant with high anti-diabetic potential. Results showed that in-vitro UV-B exposure negatively influenced chlorophyll content and photosynthetic machinery. However, Fv/Fm ratio was found non-significantly altered up to 3 h UV-B exposure. The maximum lipid peroxidation level was recorded with 46.8% higher malondialdehyde content in the plants supplemented with 5 h UV-B radiation, that was indicated the oxidative stress in W. coagulans. Conversely, UV-B treatment significantly increased the plant's stress protective compounds like carotenoids, anthocyanin, phenol and proline, in W. coagulans. Free radical scavenging activity was also significantly increased ~ 18% than the control with 3 h UV-B treatment. The maximum antioxidative enzymes activities were observed with the short-term (up to 3 h) UV-B treatment. Specifically, UV-B radiation exposure significantly increased the content of withaferin A and withanolide A in W. coagulans with maximum 1.38 and 3.42-folds, respectively. Additionally, withanolides biosynthesis related genes transcript levels were found over-expressed under the response of UV-B elicitation. The acquired results suggested that short-term UV-B supplementation triggers secondary metabolism along with combating oxidative stress via improving the antioxidative defense system in W. coagulans. Also, UV-B can be used as an efficient abiotic elicitor to increase pharmaceutical compounds (withanolides) production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01046-7.
format Online
Article
Text
id pubmed-8354842
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer India
record_format MEDLINE/PubMed
spelling pubmed-83548422021-08-11 Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition Tripathi, Deepika Meena, Ram Prasad Pandey-Rai, Shashi Physiol Mol Biol Plants Research Article Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of UV-B on the physiology and secondary metabolism of Withania coagulans, which is an important ayurvedic plant with high anti-diabetic potential. Results showed that in-vitro UV-B exposure negatively influenced chlorophyll content and photosynthetic machinery. However, Fv/Fm ratio was found non-significantly altered up to 3 h UV-B exposure. The maximum lipid peroxidation level was recorded with 46.8% higher malondialdehyde content in the plants supplemented with 5 h UV-B radiation, that was indicated the oxidative stress in W. coagulans. Conversely, UV-B treatment significantly increased the plant's stress protective compounds like carotenoids, anthocyanin, phenol and proline, in W. coagulans. Free radical scavenging activity was also significantly increased ~ 18% than the control with 3 h UV-B treatment. The maximum antioxidative enzymes activities were observed with the short-term (up to 3 h) UV-B treatment. Specifically, UV-B radiation exposure significantly increased the content of withaferin A and withanolide A in W. coagulans with maximum 1.38 and 3.42-folds, respectively. Additionally, withanolides biosynthesis related genes transcript levels were found over-expressed under the response of UV-B elicitation. The acquired results suggested that short-term UV-B supplementation triggers secondary metabolism along with combating oxidative stress via improving the antioxidative defense system in W. coagulans. Also, UV-B can be used as an efficient abiotic elicitor to increase pharmaceutical compounds (withanolides) production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01046-7. Springer India 2021-08-11 2021-08 /pmc/articles/PMC8354842/ /pubmed/34393390 http://dx.doi.org/10.1007/s12298-021-01046-7 Text en © Prof. H.S. Srivastava Foundation for Science and Society 2021
spellingShingle Research Article
Tripathi, Deepika
Meena, Ram Prasad
Pandey-Rai, Shashi
Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition
title Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition
title_full Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition
title_fullStr Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition
title_full_unstemmed Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition
title_short Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition
title_sort short term uv-b radiation mediated modulation of physiological traits and withanolides production in withania coagulans (l.) dunal under in-vitro condition
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354842/
https://www.ncbi.nlm.nih.gov/pubmed/34393390
http://dx.doi.org/10.1007/s12298-021-01046-7
work_keys_str_mv AT tripathideepika shorttermuvbradiationmediatedmodulationofphysiologicaltraitsandwithanolidesproductioninwithaniacoagulansldunalunderinvitrocondition
AT meenaramprasad shorttermuvbradiationmediatedmodulationofphysiologicaltraitsandwithanolidesproductioninwithaniacoagulansldunalunderinvitrocondition
AT pandeyraishashi shorttermuvbradiationmediatedmodulationofphysiologicaltraitsandwithanolidesproductioninwithaniacoagulansldunalunderinvitrocondition