Cargando…

Planned morning aerobic exercise in a fasted state increases energy intake in the preceding 24 h

PURPOSE: We previously observed increased energy intake (EI) at the meal before planned afternoon exercise, but the proximity of the meal to exercise might have reduced the scale of the pre-exercise anticipatory eating. Therefore, this study examined EI in the 24 h before fasted morning exercise. ME...

Descripción completa

Detalles Bibliográficos
Autores principales: Barutcu, Asya, Briasco, Elizabeth, Moon, Jake, Stensel, David J., King, James A., Witcomb, Gemma L., James, Lewis J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354893/
https://www.ncbi.nlm.nih.gov/pubmed/33620552
http://dx.doi.org/10.1007/s00394-021-02501-7
Descripción
Sumario:PURPOSE: We previously observed increased energy intake (EI) at the meal before planned afternoon exercise, but the proximity of the meal to exercise might have reduced the scale of the pre-exercise anticipatory eating. Therefore, this study examined EI in the 24 h before fasted morning exercise. METHODS: Fourteen males, experienced with gym-based aerobic exercise (age 25 ± 5 years, BMI 23.8 ± 2.5 kg/m(2)), completed counterbalanced exercise (EX) and resting (REST) trials. On day 1, subjects were told the following morning’s activity (EX/REST), before eating ad-libitum laboratory-based breakfast and lunch meals and a home-based afternoon/evening food pack. The following morning, subjects completed 30-min cycling and 30-min running (EX; 3274 ± 278 kJ) or 60-min supine rest (REST; 311 ± 34 kJ) fasted. Appetite was measured periodically, and EI quantified. RESULTS: Afternoon/evening EI (EX 7371 ± 2176 kJ; REST 6437 ± 2070 kJ; P = 0.017) and total 24-h EI (EX 14,055 ± 3672 kJ; REST 12,718 ± 3379 kJ; P = 0.011) were greater during EX, with no difference between trials at breakfast (P = 0.761) or lunch (P = 0.071). Relative EI (EI minus energy expended through EX/REST) was lower in EX (EX 10,781 ± 3539 kJ; REST 12,407 ± 3385 kJ; P = 0.004). CONCLUSION: This study suggests planned fasted aerobic exercise increases EI during the preceding afternoon/evening, precipitating a ~ 10% increase in EI in the preceding 24-h. However, this increase did not fully compensate for energy expended during exercise; meaning exercise induced an acute negative energy balance.