Cargando…
Three-dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI
PURPOSE: Brain Magnetic Resonance Images (MRIs) are essential for the diagnosis of neurological diseases. Recently, deep learning methods for unsupervised anomaly detection (UAD) have been proposed for the analysis of brain MRI. These methods rely on healthy brain MRIs and eliminate the requirement...
Autores principales: | Bengs, Marcel, Behrendt, Finn, Krüger, Julia, Opfer, Roland, Schlaefer, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354959/ https://www.ncbi.nlm.nih.gov/pubmed/34251654 http://dx.doi.org/10.1007/s11548-021-02451-9 |
Ejemplares similares
-
A systematic approach to deep learning-based nodule detection in chest radiographs
por: Behrendt, Finn, et al.
Publicado: (2023) -
A Novel Unsupervised Video Anomaly Detection Framework Based on Optical Flow Reconstruction and Erased Frame Prediction
por: Huang, Heqing, et al.
Publicado: (2023) -
Spatio-temporal deep learning methods for motion estimation using 4D OCT image data
por: Bengs, Marcel, et al.
Publicado: (2020) -
An Unsupervised Deep Hyperspectral Anomaly Detector
por: Ma, Ning, et al.
Publicado: (2018) -
Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks
por: Krüger, Julia, et al.
Publicado: (2020)