Cargando…
Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases
PURPOSE: A precise resection of the entire tumor tissue during surgery for brain metastases is essential to reduce local recurrence. Conventional intraoperative imaging techniques all have limitations in detecting tumor remnants. Therefore, there is a need for innovative new imaging methods such as...
Autores principales: | Möller, Jens, Bartsch, Alexander, Lenz, Marcel, Tischoff, Iris, Krug, Robin, Welp, Hubert, Hofmann, Martin R., Schmieder, Kirsten, Miller, Dorothea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354973/ https://www.ncbi.nlm.nih.gov/pubmed/34053010 http://dx.doi.org/10.1007/s11548-021-02412-2 |
Ejemplares similares
-
Rare finding in peripheral nerve surgery: an unicentric Castleman disease presenting as median nerve tumour
por: Carolus, Anne, et al.
Publicado: (2018) -
Automated classification of optical coherence tomography images of human atrial tissue
por: Gan, Yu, et al.
Publicado: (2016) -
Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues
por: Garcia-Allende, P. Beatriz, et al.
Publicado: (2011) -
Automated classification platform for the identification of otitis media using optical coherence tomography
por: Monroy, Guillermo L., et al.
Publicado: (2019) -
Deep Learning-Based Automated Classification of Multi-Categorical Abnormalities From Optical Coherence Tomography Images
por: Lu, Wei, et al.
Publicado: (2018)