Cargando…

Beyond performance metrics: modeling outcomes and cost for clinical machine learning

Advances in medical machine learning are expected to help personalize care, improve outcomes, and reduce wasteful spending. In quantifying potential benefits, it is important to account for constraints arising from clinical workflows. Practice variation is known to influence the accuracy and general...

Descripción completa

Detalles Bibliográficos
Autores principales: Diao, James A., Wedlund, Leia, Kvedar, Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355228/
https://www.ncbi.nlm.nih.gov/pubmed/34376781
http://dx.doi.org/10.1038/s41746-021-00495-4
Descripción
Sumario:Advances in medical machine learning are expected to help personalize care, improve outcomes, and reduce wasteful spending. In quantifying potential benefits, it is important to account for constraints arising from clinical workflows. Practice variation is known to influence the accuracy and generalizability of predictive models, but its effects on cost-effectiveness and utilization are less well-described. A simulation-based approach by Mišić and colleagues goes beyond simple performance metrics to evaluate how process variables may influence the impact and financial feasibility of clinical prediction algorithms.