Cargando…
Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. H...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355230/ https://www.ncbi.nlm.nih.gov/pubmed/34376765 http://dx.doi.org/10.1038/s41598-021-95756-3 |
_version_ | 1783736721523867648 |
---|---|
author | Gomez-Gonzalez, Emilio Fernandez-Muñoz, Beatriz Barriga-Rivera, Alejandro Navas-Garcia, Jose Manuel Fernandez-Lizaranzu, Isabel Munoz-Gonzalez, Francisco Javier Parrilla-Giraldez, Ruben Requena-Lancharro, Desiree Guerrero-Claro, Manuel Gil-Gamboa, Pedro Rosell-Valle, Cristina Gomez-Gonzalez, Carmen Mayorga-Buiza, Maria Jose Martin-Lopez, Maria Muñoz, Olga Martin, Juan Carlos Gomez Lopez, Maria Isabel Relimpio Aceituno-Castro, Jesus Perales-Esteve, Manuel A. Puppo-Moreno, Antonio Cozar, Francisco Jose Garcia Olvera-Collantes, Lucia de los Santos-Trigo, Silvia Gomez, Emilia Pernaute, Rosario Sanchez Padillo-Ruiz, Javier Marquez-Rivas, Javier |
author_facet | Gomez-Gonzalez, Emilio Fernandez-Muñoz, Beatriz Barriga-Rivera, Alejandro Navas-Garcia, Jose Manuel Fernandez-Lizaranzu, Isabel Munoz-Gonzalez, Francisco Javier Parrilla-Giraldez, Ruben Requena-Lancharro, Desiree Guerrero-Claro, Manuel Gil-Gamboa, Pedro Rosell-Valle, Cristina Gomez-Gonzalez, Carmen Mayorga-Buiza, Maria Jose Martin-Lopez, Maria Muñoz, Olga Martin, Juan Carlos Gomez Lopez, Maria Isabel Relimpio Aceituno-Castro, Jesus Perales-Esteve, Manuel A. Puppo-Moreno, Antonio Cozar, Francisco Jose Garcia Olvera-Collantes, Lucia de los Santos-Trigo, Silvia Gomez, Emilia Pernaute, Rosario Sanchez Padillo-Ruiz, Javier Marquez-Rivas, Javier |
author_sort | Gomez-Gonzalez, Emilio |
collection | PubMed |
description | Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·[Formula: see text] L(−1). This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic. |
format | Online Article Text |
id | pubmed-8355230 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-83552302021-08-11 Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples Gomez-Gonzalez, Emilio Fernandez-Muñoz, Beatriz Barriga-Rivera, Alejandro Navas-Garcia, Jose Manuel Fernandez-Lizaranzu, Isabel Munoz-Gonzalez, Francisco Javier Parrilla-Giraldez, Ruben Requena-Lancharro, Desiree Guerrero-Claro, Manuel Gil-Gamboa, Pedro Rosell-Valle, Cristina Gomez-Gonzalez, Carmen Mayorga-Buiza, Maria Jose Martin-Lopez, Maria Muñoz, Olga Martin, Juan Carlos Gomez Lopez, Maria Isabel Relimpio Aceituno-Castro, Jesus Perales-Esteve, Manuel A. Puppo-Moreno, Antonio Cozar, Francisco Jose Garcia Olvera-Collantes, Lucia de los Santos-Trigo, Silvia Gomez, Emilia Pernaute, Rosario Sanchez Padillo-Ruiz, Javier Marquez-Rivas, Javier Sci Rep Article Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·[Formula: see text] L(−1). This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic. Nature Publishing Group UK 2021-08-10 /pmc/articles/PMC8355230/ /pubmed/34376765 http://dx.doi.org/10.1038/s41598-021-95756-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Gomez-Gonzalez, Emilio Fernandez-Muñoz, Beatriz Barriga-Rivera, Alejandro Navas-Garcia, Jose Manuel Fernandez-Lizaranzu, Isabel Munoz-Gonzalez, Francisco Javier Parrilla-Giraldez, Ruben Requena-Lancharro, Desiree Guerrero-Claro, Manuel Gil-Gamboa, Pedro Rosell-Valle, Cristina Gomez-Gonzalez, Carmen Mayorga-Buiza, Maria Jose Martin-Lopez, Maria Muñoz, Olga Martin, Juan Carlos Gomez Lopez, Maria Isabel Relimpio Aceituno-Castro, Jesus Perales-Esteve, Manuel A. Puppo-Moreno, Antonio Cozar, Francisco Jose Garcia Olvera-Collantes, Lucia de los Santos-Trigo, Silvia Gomez, Emilia Pernaute, Rosario Sanchez Padillo-Ruiz, Javier Marquez-Rivas, Javier Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples |
title | Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples |
title_full | Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples |
title_fullStr | Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples |
title_full_unstemmed | Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples |
title_short | Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples |
title_sort | hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355230/ https://www.ncbi.nlm.nih.gov/pubmed/34376765 http://dx.doi.org/10.1038/s41598-021-95756-3 |
work_keys_str_mv | AT gomezgonzalezemilio hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT fernandezmunozbeatriz hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT barrigariveraalejandro hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT navasgarciajosemanuel hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT fernandezlizaranzuisabel hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT munozgonzalezfranciscojavier hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT parrillagiraldezruben hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT requenalancharrodesiree hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT guerreroclaromanuel hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT gilgamboapedro hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT rosellvallecristina hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT gomezgonzalezcarmen hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT mayorgabuizamariajose hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT martinlopezmaria hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT munozolga hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT martinjuancarlosgomez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT lopezmariaisabelrelimpio hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT aceitunocastrojesus hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT peralesestevemanuela hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT puppomorenoantonio hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT cozarfranciscojosegarcia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT olveracollanteslucia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT delossantostrigosilvia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT gomezemilia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT pernauterosariosanchez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT padilloruizjavier hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples AT marquezrivasjavier hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples |