Cargando…

Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples

Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomez-Gonzalez, Emilio, Fernandez-Muñoz, Beatriz, Barriga-Rivera, Alejandro, Navas-Garcia, Jose Manuel, Fernandez-Lizaranzu, Isabel, Munoz-Gonzalez, Francisco Javier, Parrilla-Giraldez, Ruben, Requena-Lancharro, Desiree, Guerrero-Claro, Manuel, Gil-Gamboa, Pedro, Rosell-Valle, Cristina, Gomez-Gonzalez, Carmen, Mayorga-Buiza, Maria Jose, Martin-Lopez, Maria, Muñoz, Olga, Martin, Juan Carlos Gomez, Lopez, Maria Isabel Relimpio, Aceituno-Castro, Jesus, Perales-Esteve, Manuel A., Puppo-Moreno, Antonio, Cozar, Francisco Jose Garcia, Olvera-Collantes, Lucia, de los Santos-Trigo, Silvia, Gomez, Emilia, Pernaute, Rosario Sanchez, Padillo-Ruiz, Javier, Marquez-Rivas, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355230/
https://www.ncbi.nlm.nih.gov/pubmed/34376765
http://dx.doi.org/10.1038/s41598-021-95756-3
_version_ 1783736721523867648
author Gomez-Gonzalez, Emilio
Fernandez-Muñoz, Beatriz
Barriga-Rivera, Alejandro
Navas-Garcia, Jose Manuel
Fernandez-Lizaranzu, Isabel
Munoz-Gonzalez, Francisco Javier
Parrilla-Giraldez, Ruben
Requena-Lancharro, Desiree
Guerrero-Claro, Manuel
Gil-Gamboa, Pedro
Rosell-Valle, Cristina
Gomez-Gonzalez, Carmen
Mayorga-Buiza, Maria Jose
Martin-Lopez, Maria
Muñoz, Olga
Martin, Juan Carlos Gomez
Lopez, Maria Isabel Relimpio
Aceituno-Castro, Jesus
Perales-Esteve, Manuel A.
Puppo-Moreno, Antonio
Cozar, Francisco Jose Garcia
Olvera-Collantes, Lucia
de los Santos-Trigo, Silvia
Gomez, Emilia
Pernaute, Rosario Sanchez
Padillo-Ruiz, Javier
Marquez-Rivas, Javier
author_facet Gomez-Gonzalez, Emilio
Fernandez-Muñoz, Beatriz
Barriga-Rivera, Alejandro
Navas-Garcia, Jose Manuel
Fernandez-Lizaranzu, Isabel
Munoz-Gonzalez, Francisco Javier
Parrilla-Giraldez, Ruben
Requena-Lancharro, Desiree
Guerrero-Claro, Manuel
Gil-Gamboa, Pedro
Rosell-Valle, Cristina
Gomez-Gonzalez, Carmen
Mayorga-Buiza, Maria Jose
Martin-Lopez, Maria
Muñoz, Olga
Martin, Juan Carlos Gomez
Lopez, Maria Isabel Relimpio
Aceituno-Castro, Jesus
Perales-Esteve, Manuel A.
Puppo-Moreno, Antonio
Cozar, Francisco Jose Garcia
Olvera-Collantes, Lucia
de los Santos-Trigo, Silvia
Gomez, Emilia
Pernaute, Rosario Sanchez
Padillo-Ruiz, Javier
Marquez-Rivas, Javier
author_sort Gomez-Gonzalez, Emilio
collection PubMed
description Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·[Formula: see text] L(−1). This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic.
format Online
Article
Text
id pubmed-8355230
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-83552302021-08-11 Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples Gomez-Gonzalez, Emilio Fernandez-Muñoz, Beatriz Barriga-Rivera, Alejandro Navas-Garcia, Jose Manuel Fernandez-Lizaranzu, Isabel Munoz-Gonzalez, Francisco Javier Parrilla-Giraldez, Ruben Requena-Lancharro, Desiree Guerrero-Claro, Manuel Gil-Gamboa, Pedro Rosell-Valle, Cristina Gomez-Gonzalez, Carmen Mayorga-Buiza, Maria Jose Martin-Lopez, Maria Muñoz, Olga Martin, Juan Carlos Gomez Lopez, Maria Isabel Relimpio Aceituno-Castro, Jesus Perales-Esteve, Manuel A. Puppo-Moreno, Antonio Cozar, Francisco Jose Garcia Olvera-Collantes, Lucia de los Santos-Trigo, Silvia Gomez, Emilia Pernaute, Rosario Sanchez Padillo-Ruiz, Javier Marquez-Rivas, Javier Sci Rep Article Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·[Formula: see text] L(−1). This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic. Nature Publishing Group UK 2021-08-10 /pmc/articles/PMC8355230/ /pubmed/34376765 http://dx.doi.org/10.1038/s41598-021-95756-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gomez-Gonzalez, Emilio
Fernandez-Muñoz, Beatriz
Barriga-Rivera, Alejandro
Navas-Garcia, Jose Manuel
Fernandez-Lizaranzu, Isabel
Munoz-Gonzalez, Francisco Javier
Parrilla-Giraldez, Ruben
Requena-Lancharro, Desiree
Guerrero-Claro, Manuel
Gil-Gamboa, Pedro
Rosell-Valle, Cristina
Gomez-Gonzalez, Carmen
Mayorga-Buiza, Maria Jose
Martin-Lopez, Maria
Muñoz, Olga
Martin, Juan Carlos Gomez
Lopez, Maria Isabel Relimpio
Aceituno-Castro, Jesus
Perales-Esteve, Manuel A.
Puppo-Moreno, Antonio
Cozar, Francisco Jose Garcia
Olvera-Collantes, Lucia
de los Santos-Trigo, Silvia
Gomez, Emilia
Pernaute, Rosario Sanchez
Padillo-Ruiz, Javier
Marquez-Rivas, Javier
Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_full Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_fullStr Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_full_unstemmed Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_short Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_sort hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355230/
https://www.ncbi.nlm.nih.gov/pubmed/34376765
http://dx.doi.org/10.1038/s41598-021-95756-3
work_keys_str_mv AT gomezgonzalezemilio hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT fernandezmunozbeatriz hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT barrigariveraalejandro hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT navasgarciajosemanuel hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT fernandezlizaranzuisabel hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT munozgonzalezfranciscojavier hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT parrillagiraldezruben hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT requenalancharrodesiree hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT guerreroclaromanuel hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT gilgamboapedro hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT rosellvallecristina hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT gomezgonzalezcarmen hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT mayorgabuizamariajose hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT martinlopezmaria hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT munozolga hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT martinjuancarlosgomez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT lopezmariaisabelrelimpio hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT aceitunocastrojesus hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT peralesestevemanuela hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT puppomorenoantonio hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT cozarfranciscojosegarcia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT olveracollanteslucia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT delossantostrigosilvia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT gomezemilia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT pernauterosariosanchez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT padilloruizjavier hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT marquezrivasjavier hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples