Cargando…
Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth
Plants respond to warm temperature by increased elongation growth of organs to enhance cooling capacity. Phytohormones, such as auxin and brassinosteroids, regulate this growth process. However, our view on the players involved in warm temperature-mediated growth remains fragmentary. Here, we show t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355256/ https://www.ncbi.nlm.nih.gov/pubmed/34376671 http://dx.doi.org/10.1038/s41467-021-24883-2 |
Sumario: | Plants respond to warm temperature by increased elongation growth of organs to enhance cooling capacity. Phytohormones, such as auxin and brassinosteroids, regulate this growth process. However, our view on the players involved in warm temperature-mediated growth remains fragmentary. Here, we show that warm temperature leads to an increased expression of JOXs and ST2A, genes controlling jasmonate catabolism. This leads to an elevated 12HSO(4)-JA level and consequently to a reduced level of bioactive jasmonates. Ultimately this results in more JAZ proteins, which facilitates plant growth under warm temperature conditions. Taken together, understanding the conserved role of jasmonate signalling during thermomorphogenesis contributes to ensuring food security under a changing climate. |
---|