Cargando…

Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters

Molecular additives are widely utilized to minimize non-radiative recombination in metal halide perovskite emitters due to their passivation effects from chemical bonds with ionic defects. However, a general and puzzling observation that can hardly be rationalized by passivation alone is that most o...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Yatao, Teng, Pengpeng, Xu, Weidong, Zheng, Guanhaojie, Lin, Weihua, Yin, Jun, Kobera, Libor, Abbrent, Sabina, Li, Xiangchun, Steele, Julian A., Solano, Eduardo, Roeffaers, Maarten B. J., Li, Jun, Cai, Lei, Kuang, Chaoyang, Scheblykin, Ivan G., Brus, Jiri, Zheng, Kaibo, Yang, Ying, Mohammed, Omar F., Bakr, Osman M., Pullerits, Tönu, Bai, Sai, Sun, Baoquan, Gao, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355273/
https://www.ncbi.nlm.nih.gov/pubmed/34376647
http://dx.doi.org/10.1038/s41467-021-25092-7
_version_ 1783736728358486016
author Zou, Yatao
Teng, Pengpeng
Xu, Weidong
Zheng, Guanhaojie
Lin, Weihua
Yin, Jun
Kobera, Libor
Abbrent, Sabina
Li, Xiangchun
Steele, Julian A.
Solano, Eduardo
Roeffaers, Maarten B. J.
Li, Jun
Cai, Lei
Kuang, Chaoyang
Scheblykin, Ivan G.
Brus, Jiri
Zheng, Kaibo
Yang, Ying
Mohammed, Omar F.
Bakr, Osman M.
Pullerits, Tönu
Bai, Sai
Sun, Baoquan
Gao, Feng
author_facet Zou, Yatao
Teng, Pengpeng
Xu, Weidong
Zheng, Guanhaojie
Lin, Weihua
Yin, Jun
Kobera, Libor
Abbrent, Sabina
Li, Xiangchun
Steele, Julian A.
Solano, Eduardo
Roeffaers, Maarten B. J.
Li, Jun
Cai, Lei
Kuang, Chaoyang
Scheblykin, Ivan G.
Brus, Jiri
Zheng, Kaibo
Yang, Ying
Mohammed, Omar F.
Bakr, Osman M.
Pullerits, Tönu
Bai, Sai
Sun, Baoquan
Gao, Feng
author_sort Zou, Yatao
collection PubMed
description Molecular additives are widely utilized to minimize non-radiative recombination in metal halide perovskite emitters due to their passivation effects from chemical bonds with ionic defects. However, a general and puzzling observation that can hardly be rationalized by passivation alone is that most of the molecular additives enabling high-efficiency perovskite light-emitting diodes (PeLEDs) are chelating (multidentate) molecules, while their respective monodentate counterparts receive limited attention. Here, we reveal the largely ignored yet critical role of the chelate effect on governing crystallization dynamics of perovskite emitters and mitigating trap-mediated non-radiative losses. Specifically, we discover that the chelate effect enhances lead-additive coordination affinity, enabling the formation of thermodynamically stable intermediate phases and inhibiting halide coordination-driven perovskite nucleation. The retarded perovskite nucleation and crystal growth are key to high crystal quality and thus efficient electroluminescence. Our work elucidates the full effects of molecular additives on PeLEDs by uncovering the chelate effect as an important feature within perovskite crystallization. As such, we open new prospects for the rationalized screening of highly effective molecular additives.
format Online
Article
Text
id pubmed-8355273
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-83552732021-08-30 Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters Zou, Yatao Teng, Pengpeng Xu, Weidong Zheng, Guanhaojie Lin, Weihua Yin, Jun Kobera, Libor Abbrent, Sabina Li, Xiangchun Steele, Julian A. Solano, Eduardo Roeffaers, Maarten B. J. Li, Jun Cai, Lei Kuang, Chaoyang Scheblykin, Ivan G. Brus, Jiri Zheng, Kaibo Yang, Ying Mohammed, Omar F. Bakr, Osman M. Pullerits, Tönu Bai, Sai Sun, Baoquan Gao, Feng Nat Commun Article Molecular additives are widely utilized to minimize non-radiative recombination in metal halide perovskite emitters due to their passivation effects from chemical bonds with ionic defects. However, a general and puzzling observation that can hardly be rationalized by passivation alone is that most of the molecular additives enabling high-efficiency perovskite light-emitting diodes (PeLEDs) are chelating (multidentate) molecules, while their respective monodentate counterparts receive limited attention. Here, we reveal the largely ignored yet critical role of the chelate effect on governing crystallization dynamics of perovskite emitters and mitigating trap-mediated non-radiative losses. Specifically, we discover that the chelate effect enhances lead-additive coordination affinity, enabling the formation of thermodynamically stable intermediate phases and inhibiting halide coordination-driven perovskite nucleation. The retarded perovskite nucleation and crystal growth are key to high crystal quality and thus efficient electroluminescence. Our work elucidates the full effects of molecular additives on PeLEDs by uncovering the chelate effect as an important feature within perovskite crystallization. As such, we open new prospects for the rationalized screening of highly effective molecular additives. Nature Publishing Group UK 2021-08-10 /pmc/articles/PMC8355273/ /pubmed/34376647 http://dx.doi.org/10.1038/s41467-021-25092-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Zou, Yatao
Teng, Pengpeng
Xu, Weidong
Zheng, Guanhaojie
Lin, Weihua
Yin, Jun
Kobera, Libor
Abbrent, Sabina
Li, Xiangchun
Steele, Julian A.
Solano, Eduardo
Roeffaers, Maarten B. J.
Li, Jun
Cai, Lei
Kuang, Chaoyang
Scheblykin, Ivan G.
Brus, Jiri
Zheng, Kaibo
Yang, Ying
Mohammed, Omar F.
Bakr, Osman M.
Pullerits, Tönu
Bai, Sai
Sun, Baoquan
Gao, Feng
Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
title Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
title_full Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
title_fullStr Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
title_full_unstemmed Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
title_short Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
title_sort manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355273/
https://www.ncbi.nlm.nih.gov/pubmed/34376647
http://dx.doi.org/10.1038/s41467-021-25092-7
work_keys_str_mv AT zouyatao manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT tengpengpeng manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT xuweidong manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT zhengguanhaojie manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT linweihua manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT yinjun manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT koberalibor manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT abbrentsabina manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT lixiangchun manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT steelejuliana manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT solanoeduardo manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT roeffaersmaartenbj manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT lijun manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT cailei manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT kuangchaoyang manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT scheblykinivang manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT brusjiri manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT zhengkaibo manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT yangying manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT mohammedomarf manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT bakrosmanm manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT pulleritstonu manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT baisai manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT sunbaoquan manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters
AT gaofeng manipulatingcrystallizationdynamicsthroughchelatingmoleculesforbrightperovskiteemitters