Cargando…
A Comparative Study of Machine Learning Methods for Persistence Diagrams
Many and varied methods currently exist for featurization, which is the process of mapping persistence diagrams to Euclidean space, with the goal of maximally preserving structure. However, and to our knowledge, there are presently no methodical comparisons of existing approaches, nor a standardized...
Autores principales: | Barnes, Danielle, Polanco, Luis, Perea, Jose A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355525/ https://www.ncbi.nlm.nih.gov/pubmed/34396089 http://dx.doi.org/10.3389/frai.2021.681174 |
Ejemplares similares
-
A Survey of Topological Machine Learning Methods
por: Hensel, Felix, et al.
Publicado: (2021) -
Machine learning algorithms in microbial classification: a comparative analysis
por: Wu, Yuandi, et al.
Publicado: (2023) -
Predicting ward transfer mortality with machine learning
por: Lezama, Jose L., et al.
Publicado: (2023) -
Yes we care!-Certification for machine learning methods through the care label framework
por: Morik, Katharina J., et al.
Publicado: (2022) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023)