Cargando…
A Sparsity-Driven Backpropagation-Less Learning Framework Using Populations of Spiking Growth Transform Neurons
Growth-transform (GT) neurons and their population models allow for independent control over the spiking statistics and the transient population dynamics while optimizing a physically plausible distributed energy functional involving continuous-valued neural variables. In this paper we describe a ba...
Autores principales: | Gangopadhyay, Ahana, Chakrabartty, Shantanu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355563/ https://www.ncbi.nlm.nih.gov/pubmed/34393719 http://dx.doi.org/10.3389/fnins.2021.715451 |
Ejemplares similares
-
A Spiking Neuron and Population Model Based on the Growth Transform Dynamical System
por: Gangopadhyay, Ahana, et al.
Publicado: (2020) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022) -
The adaptation of spike backpropagation delays in cortical neurons
por: Buskila, Yossi, et al.
Publicado: (2013) -
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Combining backpropagation with Equilibrium Propagation to improve an Actor-Critic reinforcement learning framework
por: Kubo, Yoshimasa, et al.
Publicado: (2022)