Cargando…
Flying through gaps: how does a bird deal with the problem and what costs are there?
Animals flying in the wild often show remarkable abilities to negotiate obstacles and narrow openings in complex environments. Impressive as these abilities are, this must result in costs in terms of impaired flight performance. In this study, I used a budgerigar as a model for studying these costs....
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355674/ https://www.ncbi.nlm.nih.gov/pubmed/34430051 http://dx.doi.org/10.1098/rsos.211072 |
_version_ | 1783736807774486528 |
---|---|
author | Henningsson, Per |
author_facet | Henningsson, Per |
author_sort | Henningsson, Per |
collection | PubMed |
description | Animals flying in the wild often show remarkable abilities to negotiate obstacles and narrow openings in complex environments. Impressive as these abilities are, this must result in costs in terms of impaired flight performance. In this study, I used a budgerigar as a model for studying these costs. The bird was filmed in stereo when flying through a wide range of gap widths from well above wingspan down to a mere 1/4 of wingspan. Three-dimensional flight trajectories were acquired and speed, wingbeat frequency and accelerations/decelerations were calculated. The bird used two different wing postures to get through the gaps and could use very small safety margins (down to 6 mm on either side) but preferred to use larger when gap width allowed. When gaps were smaller than wingspan, flight speed was reduced with reducing gap width down to half for the smallest and wingbeat frequency was increased. I conclude that flying through gaps potentially comes with multiple types of cost to a bird of which the main may be: (i) reduced flight speed increases the flight duration and hence the energy consumption to get from point A to B, (ii) the underlying U-shaped speed to power relationship means further cost from reduced flight speed, and associated with it (iii) elevated wingbeat frequency includes a third direct cost. |
format | Online Article Text |
id | pubmed-8355674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-83556742021-08-23 Flying through gaps: how does a bird deal with the problem and what costs are there? Henningsson, Per R Soc Open Sci Organismal and Evolutionary Biology Animals flying in the wild often show remarkable abilities to negotiate obstacles and narrow openings in complex environments. Impressive as these abilities are, this must result in costs in terms of impaired flight performance. In this study, I used a budgerigar as a model for studying these costs. The bird was filmed in stereo when flying through a wide range of gap widths from well above wingspan down to a mere 1/4 of wingspan. Three-dimensional flight trajectories were acquired and speed, wingbeat frequency and accelerations/decelerations were calculated. The bird used two different wing postures to get through the gaps and could use very small safety margins (down to 6 mm on either side) but preferred to use larger when gap width allowed. When gaps were smaller than wingspan, flight speed was reduced with reducing gap width down to half for the smallest and wingbeat frequency was increased. I conclude that flying through gaps potentially comes with multiple types of cost to a bird of which the main may be: (i) reduced flight speed increases the flight duration and hence the energy consumption to get from point A to B, (ii) the underlying U-shaped speed to power relationship means further cost from reduced flight speed, and associated with it (iii) elevated wingbeat frequency includes a third direct cost. The Royal Society 2021-08-11 /pmc/articles/PMC8355674/ /pubmed/34430051 http://dx.doi.org/10.1098/rsos.211072 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Organismal and Evolutionary Biology Henningsson, Per Flying through gaps: how does a bird deal with the problem and what costs are there? |
title | Flying through gaps: how does a bird deal with the problem and what costs are there? |
title_full | Flying through gaps: how does a bird deal with the problem and what costs are there? |
title_fullStr | Flying through gaps: how does a bird deal with the problem and what costs are there? |
title_full_unstemmed | Flying through gaps: how does a bird deal with the problem and what costs are there? |
title_short | Flying through gaps: how does a bird deal with the problem and what costs are there? |
title_sort | flying through gaps: how does a bird deal with the problem and what costs are there? |
topic | Organismal and Evolutionary Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355674/ https://www.ncbi.nlm.nih.gov/pubmed/34430051 http://dx.doi.org/10.1098/rsos.211072 |
work_keys_str_mv | AT henningssonper flyingthroughgapshowdoesabirddealwiththeproblemandwhatcostsarethere |