Cargando…
Efficient Bayesian inference of fully stochastic epidemiological models with applications to COVID-19
Epidemiological forecasts are beset by uncertainties about the underlying epidemiological processes, and the surveillance process through which data are acquired. We present a Bayesian inference methodology that quantifies these uncertainties, for epidemics that are modelled by (possibly) non-statio...
Autores principales: | Li, Yuting I., Turk, Günther, Rohrbach, Paul B., Pietzonka, Patrick, Kappler, Julian, Singh, Rajesh, Dolezal, Jakub, Ekeh, Timothy, Kikuchi, Lukas, Peterson, Joseph D., Bolitho, Austen, Kobayashi, Hideki, Cates, Michael E., Adhikari, R., Jack, Robert L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355677/ https://www.ncbi.nlm.nih.gov/pubmed/34430050 http://dx.doi.org/10.1098/rsos.211065 |
Ejemplares similares
-
Bayesian inference across multiple models suggests a strong increase in lethality of COVID-19 in late 2020 in the UK
por: Pietzonka, Patrick, et al.
Publicado: (2021) -
Bayesian inference for stochastic processes
por: Broemeling, Lyle D
Publicado: (2017) -
Bayesian Estimation and Inference Using Stochastic Electronics
por: Thakur, Chetan Singh, et al.
Publicado: (2016) -
Bayesian inference and comparison of stochastic transcription elongation models
por: Douglas, Jordan, et al.
Publicado: (2020) -
Efficient Bayesian inference for stochastic agent-based models
por: Jørgensen, Andreas Christ Sølvsten, et al.
Publicado: (2022)