Cargando…

On-Surface Bottom-Up Construction of COF Nanoshells towards Photocatalytic H(2) Production

The rational design of an outer shell is of great significance to promote the photocatalytic efficiency of core-shell structured photocatalysts. Herein, a covalent organic framework (COF) nanoshell was designed and deposited on the cadmium sulfide (CdS) core surface. A typical COF material, TPPA, fe...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yao, Yang, Dong, Gao, Yuchen, Li, Runlai, An, Ke, Wang, Wenjing, Zhao, Zhanfeng, Xin, Xin, Ren, Hanjie, Jiang, Zhongyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356126/
https://www.ncbi.nlm.nih.gov/pubmed/34405143
http://dx.doi.org/10.34133/2021/9798564
Descripción
Sumario:The rational design of an outer shell is of great significance to promote the photocatalytic efficiency of core-shell structured photocatalysts. Herein, a covalent organic framework (COF) nanoshell was designed and deposited on the cadmium sulfide (CdS) core surface. A typical COF material, TPPA, featuring exceptional stability, was synthesized through interfacial polymerization using 1, 3, 5-triformylphloroglucinol (TP) and p-phenylenediamine (PA) as monomers. The nanoshell endows the CdS@TPPA nanosphere with ordered channels for unimpeded light-harvesting and fast diffusion of reactants/products and well-defined modular building blocks for spatially charge separation. Moreover, the heterojunction formed between CdS and TPPA can further facilitate the effective charge separation at the interface via lower exciton binding energy compared with that of pristine TPPA. By modulating the thickness of TPPA nanoshell, the CdS@TPPA nanosphere photocatalyst with the nanoshell thickness of about 8 ± 1 nm exhibits the highest photocatalytic H(2) evolution of 194.1 μmol h(−1) (24.3 mmol g(−1) h(−1), 8 mg), which is superior to most of the reported COF-based photocatalysts. The framework nanoshell in this work may stimulate the thinking about how to design advanced shell architecture in the core-shell structured photocatalysts to achieve coordinated charge and molecule transport.