Cargando…
An adaptive backpropagation algorithm for long-term electricity load forecasting
Artificial Neural Networks (ANNs) have been widely used to determine future demand for power in the short, medium, and long terms. However, research has identified that ANNs could cause inaccurate predictions of load when used for long-term forecasting. This inaccuracy is attributed to insufficient...
Autores principales: | Mohammed, Nooriya A., Al-Bazi, Ammar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356219/ https://www.ncbi.nlm.nih.gov/pubmed/34393381 http://dx.doi.org/10.1007/s00521-021-06384-x |
Ejemplares similares
-
The adaptation of spike backpropagation delays in cortical neurons
por: Buskila, Yossi, et al.
Publicado: (2013) -
Forecasting Single Disease Cost of Cataract Based on Multivariable
Regression Analysis and Backpropagation Neural Network
por: Qing, Fang, et al.
Publicado: (2019) -
Adaptive Methods for Short-Term Electricity Load Forecasting During COVID-19 Lockdown in France
Publicado: (2021) -
Electricity Load and Price Forecasting Using Jaya-Long Short Term Memory (JLSTM) in Smart Grids
por: Khalid, Rabiya, et al.
Publicado: (2019) -
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
por: Hu, Zhongyi, et al.
Publicado: (2013)