Cargando…
Incremental learning of LSTM framework for sensor fusion in attitude estimation
This paper presents a novel method for attitude estimation of an object in 3D space by incremental learning of the Long-Short Term Memory (LSTM) network. Gyroscope, accelerometer, and magnetometer are few widely used sensors in attitude estimation applications. Traditionally, multi-sensor fusion met...
Autores principales: | Narkhede, Parag, Walambe, Rahee, Poddar, Shashi, Kotecha, Ketan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356651/ https://www.ncbi.nlm.nih.gov/pubmed/34435103 http://dx.doi.org/10.7717/peerj-cs.662 |
Ejemplares similares
-
Cascaded Complementary Filter Architecture for Sensor Fusion in Attitude Estimation
por: Narkhede, Parag, et al.
Publicado: (2021) -
Stance detection with BERT embeddings for credibility analysis of information on social media
por: Karande, Hema, et al.
Publicado: (2021) -
Harvesting social media sentiment analysis to enhance stock market prediction using deep learning
por: Mehta, Pooja, et al.
Publicado: (2021) -
Is Class-Incremental Enough for Continual Learning?
por: Cossu, Andrea, et al.
Publicado: (2022) -
Cervical cancer detection in pap smear whole slide images using convNet with transfer learning and progressive resizing
por: Bhatt, Anant R., et al.
Publicado: (2021)