Cargando…
COTAN: scRNA-seq data analysis based on gene co-expression
Estimating the co-expression of cell identity factors in single-cell is crucial. Due to the low efficiency of scRNA-seq methodologies, sensitive computational approaches are critical to accurately infer transcription profiles in a cell population. We introduce COTAN, a statistical and computational...
Autores principales: | Galfrè, Silvia Giulia, Morandin, Francesco, Pietrosanto, Marco, Cremisi, Federico, Helmer-Citterich, Manuela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356963/ https://www.ncbi.nlm.nih.gov/pubmed/34396096 http://dx.doi.org/10.1093/nargab/lqab072 |
Ejemplares similares
-
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
por: Zhang, Ziqi, et al.
Publicado: (2022) -
Direct-seq: programmed gRNA scaffold for streamlined scRNA-seq in CRISPR screen
por: Song, Qingkai, et al.
Publicado: (2020) -
Cell lineage inference from SNP and scRNA-Seq data
por: Ding, Jun, et al.
Publicado: (2019) -
SpaGE: Spatial Gene Enhancement using scRNA-seq
por: Abdelaal, Tamim, et al.
Publicado: (2020) -
scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data
por: Johansen, Nelson, et al.
Publicado: (2019)