Cargando…
Criminal networks analysis in missing data scenarios through graph distances
Data collected in criminal investigations may suffer from issues like: (i) incompleteness, due to the covert nature of criminal organizations; (ii) incorrectness, caused by either unintentional data collection errors or intentional deception by criminals; (iii) inconsistency, when the same informati...
Autores principales: | Ficara, Annamaria, Cavallaro, Lucia, Curreri, Francesco, Fiumara, Giacomo, De Meo, Pasquale, Bagdasar, Ovidiu, Song, Wei, Liotta, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357088/ https://www.ncbi.nlm.nih.gov/pubmed/34379625 http://dx.doi.org/10.1371/journal.pone.0255067 |
Ejemplares similares
-
Disrupting resilient criminal networks through data analysis: The case of Sicilian Mafia
por: Cavallaro, Lucia, et al.
Publicado: (2020) -
Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study
por: Erhan, Laura, et al.
Publicado: (2021) -
Recurrent sequences: key results, applications, and problems
por: Andrica, Dorin, et al.
Publicado: (2020) -
Evaluating graph neural networks under graph sampling scenarios
por: Wei, Qiang, et al.
Publicado: (2022) -
Graph distance for complex networks
por: Shimada, Yutaka, et al.
Publicado: (2016)