Cargando…

Multiple memory formation in glassy landscapes

Cyclically sheared jammed packings form memories of the shear amplitude at which they were trained by falling into periodic orbits where each particle returns to the identical position in subsequent cycles. While simple models that treat clusters of rearranging particles as isolated two-state system...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindeman, Chloe W., Nagel, Sidney R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357226/
https://www.ncbi.nlm.nih.gov/pubmed/34380622
http://dx.doi.org/10.1126/sciadv.abg7133
Descripción
Sumario:Cyclically sheared jammed packings form memories of the shear amplitude at which they were trained by falling into periodic orbits where each particle returns to the identical position in subsequent cycles. While simple models that treat clusters of rearranging particles as isolated two-state systems offer insight into this memory formation, they fail to account for the long training times and multiperiod orbits observed in simulated sheared packings. We show that adding interactions between rearranging clusters overcomes these deficiencies. In addition, interactions allow simultaneous encoding of multiple memories, which would not have been possible otherwise. These memories are different in an essential way from those found in other systems, such as multiple transient memories observed in sheared suspensions, and contain information about the strength of the interactions.