Cargando…
Predicting Future Care Requirements Using Machine Learning for Pediatric Intensive and Routine Care Inpatients
OBJECTIVES: Develop and compare separate prediction models for ICU and non-ICU care for hospitalized children in four future time periods (6–12, 12–18, 18–24, and 24–30 hr) and assess these models in an independent cohort and simulated children’s hospital. DESIGN: Predictive modeling used cohorts fr...
Autores principales: | Trujillo Rivera, Eduardo A., Chamberlain, James M., Patel, Anita K., Zeng-Treitler, Qing, Bost, James E., Heneghan, Julia A., Morizono, Hiroki, Pollack, Murray M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357255/ https://www.ncbi.nlm.nih.gov/pubmed/34396143 http://dx.doi.org/10.1097/CCE.0000000000000505 |
Ejemplares similares
-
Classification of anti hepatitis peptides using Support Vector Machine with hybrid Ant Colony OptimizationThe Luxembourg database of trichothecene type B F. graminearum and F. culmorum producers
por: Mishra, Gunjan, et al.
Publicado: (2016) -
Genome-wide expression analysis of genetic networks in Neurospora crassa
por: Logan, David A, et al.
Publicado: (2007) -
RetroPred: A tool for prediction, classification and extraction of non-LTR retrotransposons (LINEs & SINEs) from the genome by integrating PALS, PILER, MEME and ANN
por: Naik, Pradeep Kumar, et al.
Publicado: (2008) -
An SVM method using evolutionary information for the identification of allergenic proteins
por: Kumar, Kandaswamy Krishna, et al.
Publicado: (2008) -
Prediction of enzymes and non-enzymes from protein sequences based on sequence derived features and PSSM matrix using artificial neural network
por: Naik, Pradeep Kumar, et al.
Publicado: (2007)