Cargando…

Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species (Vibrio paracholerae sp. nov.) with a History of Association with Humans

Most efforts to understand the biology of Vibrio cholerae have focused on a single group, the pandemic-generating lineage harboring the strains responsible for all known cholera pandemics. Consequently, little is known about the diversity of this species in its native aquatic environment. To underst...

Descripción completa

Detalles Bibliográficos
Autores principales: Islam, Mohammad Tarequl, Nasreen, Tania, Kirchberger, Paul C., Liang, Kevin Y. H., Orata, Fabini D., Johura, Fatema-Tuz, Hussain, Nora A. S., Im, Monica S., Tarr, Cheryl L., Alam, Munirul, Boucher, Yann F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357300/
https://www.ncbi.nlm.nih.gov/pubmed/34132593
http://dx.doi.org/10.1128/AEM.00422-21
_version_ 1783737104993353728
author Islam, Mohammad Tarequl
Nasreen, Tania
Kirchberger, Paul C.
Liang, Kevin Y. H.
Orata, Fabini D.
Johura, Fatema-Tuz
Hussain, Nora A. S.
Im, Monica S.
Tarr, Cheryl L.
Alam, Munirul
Boucher, Yann F.
author_facet Islam, Mohammad Tarequl
Nasreen, Tania
Kirchberger, Paul C.
Liang, Kevin Y. H.
Orata, Fabini D.
Johura, Fatema-Tuz
Hussain, Nora A. S.
Im, Monica S.
Tarr, Cheryl L.
Alam, Munirul
Boucher, Yann F.
author_sort Islam, Mohammad Tarequl
collection PubMed
description Most efforts to understand the biology of Vibrio cholerae have focused on a single group, the pandemic-generating lineage harboring the strains responsible for all known cholera pandemics. Consequently, little is known about the diversity of this species in its native aquatic environment. To understand the differences in the V. cholerae populations inhabiting regions with a history of cholera cases and those lacking such a history, a comparative analysis of population composition was performed. Little overlap was found in lineage compositions between those in Dhaka, Bangladesh (where cholera is endemic), located in the Ganges Delta, and those in Falmouth, MA (no known history of cholera), a small coastal town on the United States east coast. The most striking difference was the presence of a group of related lineages at high abundance in Dhaka, which was completely absent from Falmouth. Phylogenomic analysis revealed that these lineages form a cluster at the base of the phylogeny for the V. cholerae species and were sufficiently differentiated genetically and phenotypically to form a novel species. A retrospective search revealed that strains from this species have been anecdotally found from around the world and were isolated as early as 1916 from a British soldier in Egypt suffering from choleraic diarrhea. In 1935, Gardner and Venkatraman unofficially referred to a member of this group as Vibrio paracholerae. In recognition of this earlier designation, we propose the name Vibrio paracholerae sp. nov. for this bacterium. Genomic analysis suggests a link with human populations for this novel species and substantial interaction with its better-known sister species. IMPORTANCE Cholera continues to remain a major public health threat around the globe. Understanding the ecology, evolution, and environmental adaptation of the causative agent (Vibrio cholerae) and tracking the emergence of novel lineages with pathogenic potential are essential to combat the problem. In this study, we investigated the population dynamics of Vibrio cholerae in an inland locality, which is known as endemic for cholera, and compared them with those of a cholera-free coastal location. We found the consistent presence of the pandemic-generating lineage of V. cholerae in Dhaka, where cholera is endemic, and an exclusive presence of a lineage phylogenetically distinct from other V. cholerae lineages. Our study suggests that this lineage represents a novel species that has pathogenic potential and a human link to its environmental abundance. The possible association with human populations and coexistence and interaction with toxigenic V. cholerae in the natural environment make this potential human pathogen an important subject for future studies.
format Online
Article
Text
id pubmed-8357300
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-83573002021-08-23 Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species (Vibrio paracholerae sp. nov.) with a History of Association with Humans Islam, Mohammad Tarequl Nasreen, Tania Kirchberger, Paul C. Liang, Kevin Y. H. Orata, Fabini D. Johura, Fatema-Tuz Hussain, Nora A. S. Im, Monica S. Tarr, Cheryl L. Alam, Munirul Boucher, Yann F. Appl Environ Microbiol Microbial Ecology Most efforts to understand the biology of Vibrio cholerae have focused on a single group, the pandemic-generating lineage harboring the strains responsible for all known cholera pandemics. Consequently, little is known about the diversity of this species in its native aquatic environment. To understand the differences in the V. cholerae populations inhabiting regions with a history of cholera cases and those lacking such a history, a comparative analysis of population composition was performed. Little overlap was found in lineage compositions between those in Dhaka, Bangladesh (where cholera is endemic), located in the Ganges Delta, and those in Falmouth, MA (no known history of cholera), a small coastal town on the United States east coast. The most striking difference was the presence of a group of related lineages at high abundance in Dhaka, which was completely absent from Falmouth. Phylogenomic analysis revealed that these lineages form a cluster at the base of the phylogeny for the V. cholerae species and were sufficiently differentiated genetically and phenotypically to form a novel species. A retrospective search revealed that strains from this species have been anecdotally found from around the world and were isolated as early as 1916 from a British soldier in Egypt suffering from choleraic diarrhea. In 1935, Gardner and Venkatraman unofficially referred to a member of this group as Vibrio paracholerae. In recognition of this earlier designation, we propose the name Vibrio paracholerae sp. nov. for this bacterium. Genomic analysis suggests a link with human populations for this novel species and substantial interaction with its better-known sister species. IMPORTANCE Cholera continues to remain a major public health threat around the globe. Understanding the ecology, evolution, and environmental adaptation of the causative agent (Vibrio cholerae) and tracking the emergence of novel lineages with pathogenic potential are essential to combat the problem. In this study, we investigated the population dynamics of Vibrio cholerae in an inland locality, which is known as endemic for cholera, and compared them with those of a cholera-free coastal location. We found the consistent presence of the pandemic-generating lineage of V. cholerae in Dhaka, where cholera is endemic, and an exclusive presence of a lineage phylogenetically distinct from other V. cholerae lineages. Our study suggests that this lineage represents a novel species that has pathogenic potential and a human link to its environmental abundance. The possible association with human populations and coexistence and interaction with toxigenic V. cholerae in the natural environment make this potential human pathogen an important subject for future studies. American Society for Microbiology 2021-08-11 /pmc/articles/PMC8357300/ /pubmed/34132593 http://dx.doi.org/10.1128/AEM.00422-21 Text en Copyright © 2021 Islam et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Microbial Ecology
Islam, Mohammad Tarequl
Nasreen, Tania
Kirchberger, Paul C.
Liang, Kevin Y. H.
Orata, Fabini D.
Johura, Fatema-Tuz
Hussain, Nora A. S.
Im, Monica S.
Tarr, Cheryl L.
Alam, Munirul
Boucher, Yann F.
Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species (Vibrio paracholerae sp. nov.) with a History of Association with Humans
title Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species (Vibrio paracholerae sp. nov.) with a History of Association with Humans
title_full Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species (Vibrio paracholerae sp. nov.) with a History of Association with Humans
title_fullStr Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species (Vibrio paracholerae sp. nov.) with a History of Association with Humans
title_full_unstemmed Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species (Vibrio paracholerae sp. nov.) with a History of Association with Humans
title_short Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species (Vibrio paracholerae sp. nov.) with a History of Association with Humans
title_sort population analysis of vibrio cholerae in aquatic reservoirs reveals a novel sister species (vibrio paracholerae sp. nov.) with a history of association with humans
topic Microbial Ecology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357300/
https://www.ncbi.nlm.nih.gov/pubmed/34132593
http://dx.doi.org/10.1128/AEM.00422-21
work_keys_str_mv AT islammohammadtarequl populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT nasreentania populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT kirchbergerpaulc populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT liangkevinyh populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT oratafabinid populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT johurafatematuz populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT hussainnoraas populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT immonicas populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT tarrcheryll populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT alammunirul populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans
AT boucheryannf populationanalysisofvibriocholeraeinaquaticreservoirsrevealsanovelsisterspeciesvibrioparacholeraespnovwithahistoryofassociationwithhumans