Cargando…
Propensity score synthetic augmentation matching using generative adversarial networks (PSSAM-GAN)
Understanding causality is of crucial importance in biomedical sciences, where developing prediction models is insufficient because the models need to be actionable. However, data sources, such as electronic health records, are observational and often plagued with various types of biases, e.g. confo...
Autores principales: | Ghosh, Shantanu, Boucher, Christina, Bian, Jiang, Prosperi, Mattia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357304/ https://www.ncbi.nlm.nih.gov/pubmed/34386786 http://dx.doi.org/10.1016/j.cmpbup.2021.100020 |
Ejemplares similares
-
SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation
por: Hazra, Debapriya, et al.
Publicado: (2020) -
Generation of synthetic ground glass nodules using generative adversarial networks (GANs)
por: Wang, Zhixiang, et al.
Publicado: (2022) -
DoseGAN: a generative adversarial network for synthetic dose prediction using attention-gated discrimination and generation
por: Kearney, Vasant, et al.
Publicado: (2020) -
Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
por: Motamed, Saman, et al.
Publicado: (2021) -
Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks
por: Sandfort, Veit, et al.
Publicado: (2019)