Cargando…
Diversity Evolutionary Policy Deep Reinforcement Learning
The reinforcement learning algorithms based on policy gradient may fall into local optimal due to gradient disappearance during the update process, which in turn affects the exploration ability of the reinforcement learning agent. In order to solve the above problem, in this paper, the cross-entropy...
Autores principales: | Liu, Jian, Feng, Liming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357468/ https://www.ncbi.nlm.nih.gov/pubmed/34394336 http://dx.doi.org/10.1155/2021/5300189 |
Ejemplares similares
-
Deep-reinforcement-learning-based water diversion strategy
por: Jiang, Qingsong, et al.
Publicado: (2023) -
Diversity oriented Deep Reinforcement Learning for targeted molecule generation
por: Pereira, Tiago, et al.
Publicado: (2021) -
Adaptable control policies for variable liquid chromatography columns using deep reinforcement learning
por: Andersson, David, et al.
Publicado: (2023) -
Advanced deep learning with Keras: apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more
por: Atienza, Rowel
Publicado: (2018) -
Exploring the Impact of Simple Explanations and Agency on Batch Deep Reinforcement Learning Induced Pedagogical Policies
por: Sanz Ausin, Markel, et al.
Publicado: (2020)