Cargando…

Effect of Supplementation of Fermented Yeast Culture on Hormones and Their Receptors on Exposure to Higher Temperature and on Production Performance after Exposure in Nicobari Chickens

Heat stress (HS) affects the production performance in chickens and causes economic loss to the producers. Most of the studies have been conducted on and for the welfare of broilers. We still lack information on the physiological parameters being affected during chronic heat stress in layers. To fil...

Descripción completa

Detalles Bibliográficos
Autores principales: Nidamanuri, A. L., Leslie Leo Prince, Lawrence, Yadav, S. P., Bhattacharya, T. K., Konadaka, S. R. R., Bhanja, S. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357510/
https://www.ncbi.nlm.nih.gov/pubmed/34394347
http://dx.doi.org/10.1155/2021/5539780
Descripción
Sumario:Heat stress (HS) affects the production performance in chickens and causes economic loss to the producers. Most of the studies have been conducted on and for the welfare of broilers. We still lack information on the physiological parameters being affected during chronic heat stress in layers. To fill this gap, the present study evaluated the effect of heat stress (induced in the chamber) during the prelaying period (21–23 weeks) on plasma levels of the hormones leptin and ghrelin and GH and expression of the respective receptors and heat stress markers. Three groups were considered, one at room temperature (CR) and the other two groups (SH and CH) subjected to heat stress at 39°C for four hours for three weeks (21–23 weeks of age). The SH group (SH) feed was supplemented with fermented yeast culture (FYC, 700 mg/kg), whereas the CH group was devoid of it. After that, all the groups were shifted to shed under natural ambient conditions till 31 weeks of age. Studies were restricted to production performance only. Feed offered without yeast culture (CH group) had a smaller concentration of plasma hormones (P < 0.01) and increased expression fold of the hormone receptors (P < 0.01). Further, the group also presented higher liver AMP kinase enzyme, plasma MDA (malondialdehyde), and cholesterol concentrations. These changes likely explained the decrease in feed intake and the CH group's body weight and further reduced the production performance during the laying period. Supplementation with FYC to birds had an opposite effect on the above-mentioned parameters, reducing HS effects. In summary, supplementation with FYC (700 mg/kg) maintained physiological parameters as in the CR group under HS conditions and negated adverse effects on parameters both before and during laying periods.