Cargando…
Stochastic probical strategies in a delay virus infection model to combat COVID-19
In disease model systems, random noises and time delay factors play key role in interpreting disease dynamics to comprehend deeper insights into the course of dynamics. An endeavor to forecast intercellular behavioral dynamics of SARS-CoV-2 virus via Infection model with responsive host immune mecha...
Autores principales: | Pitchaimani, M., Brasanna Devi, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358091/ https://www.ncbi.nlm.nih.gov/pubmed/34400855 http://dx.doi.org/10.1016/j.chaos.2021.111325 |
Ejemplares similares
-
Effects of randomness on viral infection model with application
por: Pitchaimani, M., et al.
Publicado: (2018) -
Probing a Stochastic Epidemic Hepatitis C Virus Model with a Chronically Infected Treated Population
por: Rajasekar, S. P., et al.
Publicado: (2022) -
Fractional dynamical probes in COVID-19 model with control interventions: a comparative assessment of eight most affected countries
por: Pitchaimani, M., et al.
Publicado: (2022) -
Optimal control strategies to combat COVID-19 transmission: A mathematical model with incubation time delay
por: Singh, Harendra Pal, et al.
Publicado: (2022) -
Stochastic COVID-19 SEIQ epidemic model with time-delay
por: Khan, Amir, et al.
Publicado: (2021)