Cargando…
Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions
BACKGROUND: Crewed National Aeronautics and Space Administration (NASA) missions to other solar system bodies are currently being planned. One high-profile scientific focus during such expeditions would be life detection, specifically the discovery of past or present microbial life, if they exist. H...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358432/ https://www.ncbi.nlm.nih.gov/pubmed/34394013 http://dx.doi.org/10.3389/fmicb.2021.608478 |
_version_ | 1783737338988331008 |
---|---|
author | Danko, David Malli Mohan, Ganesh Babu Sierra, Maria A. Rucker, Michelle Singh, Nitin K. Regberg, Aaron B. Bell, Mary S. O’Hara, Niamh B. Ounit, Rachid Mason, Christopher E. Venkateswaran, Kasthuri |
author_facet | Danko, David Malli Mohan, Ganesh Babu Sierra, Maria A. Rucker, Michelle Singh, Nitin K. Regberg, Aaron B. Bell, Mary S. O’Hara, Niamh B. Ounit, Rachid Mason, Christopher E. Venkateswaran, Kasthuri |
author_sort | Danko, David |
collection | PubMed |
description | BACKGROUND: Crewed National Aeronautics and Space Administration (NASA) missions to other solar system bodies are currently being planned. One high-profile scientific focus during such expeditions would be life detection, specifically the discovery of past or present microbial life, if they exist. However, both humans and associated objects typically carry a high microbial burden. Thus, it is essential to distinguish between microbes brought with the expedition and those present on the exploring planets. Modern spacesuits are unique, customized spacecraft which provide protection, mobility and life support to crew during spacewalks, yet they vent, and the mobility of microbes through spacesuits has not been studied. RESULTS: To evaluate the microbial colonization of spacesuits, NASA used an Extravehicular Activity swab kit to examine viable microbial populations of 48 samples from spacesuits using both traditional microbiological methods and molecular sequencing methods. The cultivable microbial population ranged from below the detection limit to 9 × 10(2) colony forming units per 25 cm(2) of sample and also significantly varied by the location. The cultivable microbial diversity was dominated by members of Bacillus, Arthrobacter, and Ascomycota. However, 16S rRNA-based viable bacterial burden ranged from 10(5) to 10(6) copies per 25 cm(2) of sample. Shotgun metagenome sequencing revealed the presence of a diverse microbial population on the spacesuit surfaces, including Curtobacterium and Methylobacterium from across all sets of spacesuits in high abundance. Among bacterial species identified, higher abundance of Cutibacterium acnes, Methylobacterium oryzae, and M. phyllosphaerae reads were documented. CONCLUSION: The results of this study provide evidence that identical microbial strains may live on the wrist joint, inner gauntlet, and outer gauntlet of spacesuits. This raises the possibility, but does not confirm that microbial contaminants on the outside of the suits could contaminate planetary science operations unless additional measures are taken. Overall, these data provide the first estimate of microbial distribution associated with spacesuit surfaces, which will help future mission planners develop effective planetary protection strategies. |
format | Online Article Text |
id | pubmed-8358432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83584322021-08-13 Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions Danko, David Malli Mohan, Ganesh Babu Sierra, Maria A. Rucker, Michelle Singh, Nitin K. Regberg, Aaron B. Bell, Mary S. O’Hara, Niamh B. Ounit, Rachid Mason, Christopher E. Venkateswaran, Kasthuri Front Microbiol Microbiology BACKGROUND: Crewed National Aeronautics and Space Administration (NASA) missions to other solar system bodies are currently being planned. One high-profile scientific focus during such expeditions would be life detection, specifically the discovery of past or present microbial life, if they exist. However, both humans and associated objects typically carry a high microbial burden. Thus, it is essential to distinguish between microbes brought with the expedition and those present on the exploring planets. Modern spacesuits are unique, customized spacecraft which provide protection, mobility and life support to crew during spacewalks, yet they vent, and the mobility of microbes through spacesuits has not been studied. RESULTS: To evaluate the microbial colonization of spacesuits, NASA used an Extravehicular Activity swab kit to examine viable microbial populations of 48 samples from spacesuits using both traditional microbiological methods and molecular sequencing methods. The cultivable microbial population ranged from below the detection limit to 9 × 10(2) colony forming units per 25 cm(2) of sample and also significantly varied by the location. The cultivable microbial diversity was dominated by members of Bacillus, Arthrobacter, and Ascomycota. However, 16S rRNA-based viable bacterial burden ranged from 10(5) to 10(6) copies per 25 cm(2) of sample. Shotgun metagenome sequencing revealed the presence of a diverse microbial population on the spacesuit surfaces, including Curtobacterium and Methylobacterium from across all sets of spacesuits in high abundance. Among bacterial species identified, higher abundance of Cutibacterium acnes, Methylobacterium oryzae, and M. phyllosphaerae reads were documented. CONCLUSION: The results of this study provide evidence that identical microbial strains may live on the wrist joint, inner gauntlet, and outer gauntlet of spacesuits. This raises the possibility, but does not confirm that microbial contaminants on the outside of the suits could contaminate planetary science operations unless additional measures are taken. Overall, these data provide the first estimate of microbial distribution associated with spacesuit surfaces, which will help future mission planners develop effective planetary protection strategies. Frontiers Media S.A. 2021-07-29 /pmc/articles/PMC8358432/ /pubmed/34394013 http://dx.doi.org/10.3389/fmicb.2021.608478 Text en Copyright © 2021 Danko, Malli Mohan, Sierra, Rucker, Singh, Regberg, Bell, O’Hara, Ounit, Mason and Venkateswaran. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Danko, David Malli Mohan, Ganesh Babu Sierra, Maria A. Rucker, Michelle Singh, Nitin K. Regberg, Aaron B. Bell, Mary S. O’Hara, Niamh B. Ounit, Rachid Mason, Christopher E. Venkateswaran, Kasthuri Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions |
title | Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions |
title_full | Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions |
title_fullStr | Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions |
title_full_unstemmed | Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions |
title_short | Characterization of Spacesuit Associated Microbial Communities and Their Implications for NASA Missions |
title_sort | characterization of spacesuit associated microbial communities and their implications for nasa missions |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358432/ https://www.ncbi.nlm.nih.gov/pubmed/34394013 http://dx.doi.org/10.3389/fmicb.2021.608478 |
work_keys_str_mv | AT dankodavid characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT mallimohanganeshbabu characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT sierramariaa characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT ruckermichelle characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT singhnitink characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT regbergaaronb characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT bellmarys characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT oharaniamhb characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT ounitrachid characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT masonchristophere characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions AT venkateswarankasthuri characterizationofspacesuitassociatedmicrobialcommunitiesandtheirimplicationsfornasamissions |