Cargando…

Evaluation of Auto-Planning for Left-Side Breast Cancer After Breast-Conserving Surgery Based on Geometrical Relationship

PURPOSE: This study aimed to evaluate (1) the performance of the Auto-Planning module embedded in the Pinnacle treatment planning system (TPS) with 30 left-side breast cancer plans and (2) the dose-distance correlations between dose-based patients and overlap volume histogram-based (OVH) patients. M...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yijiang, Bai, Han, Huang, Danju, Chen, Feihu, Xia, Yaoxiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358503/
https://www.ncbi.nlm.nih.gov/pubmed/34355592
http://dx.doi.org/10.1177/15330338211033050
Descripción
Sumario:PURPOSE: This study aimed to evaluate (1) the performance of the Auto-Planning module embedded in the Pinnacle treatment planning system (TPS) with 30 left-side breast cancer plans and (2) the dose-distance correlations between dose-based patients and overlap volume histogram-based (OVH) patients. METHOD: A total of 30 patients with left-side breast cancer after breast-conserving surgery were enrolled in this study. The clinical manual-planning (MP) and the Auto-Planning (AP) plans were generated by Monaco and by the Auto-Planning module in Pinnacle respectively. The geometric information between organ at risk (OAR) and planning target volume (PTV) of each patient was described by the OVH. The AP and MP plans were ranked to compare with the geometry-based patients from OVH. The Pearson product-moment correlation coefficient (R) was used to describe the correlations between dose-based patients (APs and MPs) and geometry-based patients (OVH). Dosimetric differences between MP and AP plans were evaluated with statistical analysis. RESULT: The correlation coefficient (mean R = 0.71) indicated that the AP plans have a high correlation with geometry-based patients from OVH, whereas the correlation coefficient (mean R = 0.48) shows a weak correlation between MP plans and geometry-based patients. The dosimetric comparison revealed a statistically significant improvement in the ipsilateral lung V(5Gy) and V(10Gy,) and in the heart V(5Gy) of AP plans compared to MP plans, while statistical reduction was seen in PTV V(107%) for MP plans compared to AP plans. CONCLUSION: The overall results of AP plans were superior to MP plans. The dose distribution in AP plans was more consistent with the distance-dose relationship described by OVH. After eliminating the interference of human factors, the AP was able to provide more stable and objective plans for radiotherapy patients.