Cargando…
A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification
The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EE...
Autores principales: | Ni, Tongguang, Ni, Yuyao, Xue, Jing, Wang, Suhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358659/ https://www.ncbi.nlm.nih.gov/pubmed/34393958 http://dx.doi.org/10.3389/fpsyg.2021.721266 |
Ejemplares similares
-
Multi-Source and Multi-Representation Adaptation for Cross-Domain Electroencephalography Emotion Recognition
por: Cao, Jiangsheng, et al.
Publicado: (2022) -
Transfer Discriminative Dictionary Pair Learning Approach for Across-Subject EEG Emotion Classification
por: Ruan, Yang, et al.
Publicado: (2022) -
Image Fusion of CT and MR with Sparse Representation in NSST Domain
por: Qiu, Chenhui, et al.
Publicado: (2017) -
Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Sparse Representation-Based Discriminative Metric Learning for Brain MRI Image Retrieval
por: Zhou, Guohua, et al.
Publicado: (2022)