Cargando…
Sparse Granger Causality Analysis Model Based on Sensors Correlation for Emotion Recognition Classification in Electroencephalography
In recent years, affective computing based on electroencephalogram (EEG) data has attracted increased attention. As a classic EEG feature extraction model, Granger causality analysis has been widely used in emotion classification models, which construct a brain network by calculating the causal rela...
Autores principales: | Chen, Dongwei, Miao, Rui, Deng, Zhaoyong, Han, Na, Deng, Chunjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358835/ https://www.ncbi.nlm.nih.gov/pubmed/34393745 http://dx.doi.org/10.3389/fncom.2021.684373 |
Ejemplares similares
-
Sparse Logistic Regression With L(1/2) Penalty for Emotion Recognition in Electroencephalography Classification
por: Chen, Dong-Wei, et al.
Publicado: (2020) -
Emotion Recognition Using a Novel Granger Causality Quantifier and Combined Electrodes of EEG
por: Goshvarpour, Atefeh, et al.
Publicado: (2023) -
Granger causality revisited
por: Friston, Karl J., et al.
Publicado: (2014) -
Granger-Causality-Based Multi-Frequency Band EEG Graph Feature Extraction and Fusion for Emotion Recognition
por: Zhang, Jing, et al.
Publicado: (2022) -
Video Sensor-Based Complex Scene Analysis with Granger Causality
por: Fan, Yawen, et al.
Publicado: (2013)