Cargando…
Machine Learning of Quasiparticle Energies in Molecules and Clusters
[Image: see text] We present a Δ-machine learning approach for the prediction of GW quasiparticle energies (ΔMLQP) and photoelectron spectra of molecules and clusters, using orbital-sensitive representations (OSRs) based on molecular Cartesian coordinates in kernel ridge regression-based supervised...
Autores principales: | Çaylak, Onur, Baumeier, Björn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359011/ https://www.ncbi.nlm.nih.gov/pubmed/34314186 http://dx.doi.org/10.1021/acs.jctc.1c00520 |
Ejemplares similares
-
Excited-State Geometry Optimization of Small Molecules
with Many-Body Green’s Functions Theory
por: Çaylak, Onur, et al.
Publicado: (2021) -
Evolutionary Approach to Constructing a Deep Feedforward Neural Network
for Prediction of Electronic Coupling Elements in Molecular Materials
por: Çaylak, Onur, et al.
Publicado: (2019) -
Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules
por: Förster, Arno, et al.
Publicado: (2021) -
Quasiparticle diffusion and energy resolution in superconducting tunneling junctions
por: Den Hartog, R, et al.
Publicado: (2001) -
Density Functional Prediction of Quasiparticle, Excitation, and Resonance Energies of Molecules With a Global Scaling Correction Approach
por: Yang, Xiaolong, et al.
Publicado: (2020)