Cargando…
A novel statistical method for modeling covariate effects in bisulfite sequencing derived measures of DNA methylation
Identifying disease‐associated changes in DNA methylation can help us gain a better understanding of disease etiology. Bisulfite sequencing allows the generation of high‐throughput methylation profiles at single‐base resolution of DNA. However, optimally modeling and analyzing these sparse and discr...
Autores principales: | Zhao, Kaiqiong, Oualkacha, Karim, Lakhal‐Chaieb, Lajmi, Labbe, Aurélie, Klein, Kathleen, Ciampi, Antonio, Hudson, Marie, Colmegna, Inés, Pastinen, Tomi, Zhang, Tieyuan, Daley, Denise, Greenwood, Celia M.T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359306/ https://www.ncbi.nlm.nih.gov/pubmed/32438470 http://dx.doi.org/10.1111/biom.13307 |
Ejemplares similares
-
A smoothing‐based goodness‐of‐fit test of covariance for functional data
por: Chen, Stephanie T., et al.
Publicado: (2019) -
An evaluation of methods correcting for cell-type heterogeneity in DNA methylation studies
por: McGregor, Kevin, et al.
Publicado: (2016) -
Combining Multiple Imputation and Inverse-Probability
Weighting
por: Seaman, Shaun R, et al.
Publicado: (2012) -
Estimating Peer Effects in Longitudinal Dyadic Data Using Instrumental Variables
por: O'Malley, A James, et al.
Publicado: (2014) -
Causal Mediation Analysis with Multiple Mediators
por: Daniel, R M, et al.
Publicado: (2015)