Cargando…
Mobile snapshot hyperspectral imaging device for skin evaluation using diffractive optical elements
OBJECTIVE: A mobile handheld snapshot hyperspectral imaging device was developed and tested for in vivo skin evaluation using a new spectral imaging technology. METHODS: The device is equipped with four different LED light sources (VIS, 810 nm, 850 nm, and 940 nm) for illumination. Based on a diffra...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359345/ https://www.ncbi.nlm.nih.gov/pubmed/33511672 http://dx.doi.org/10.1111/srt.12991 |
Sumario: | OBJECTIVE: A mobile handheld snapshot hyperspectral imaging device was developed and tested for in vivo skin evaluation using a new spectral imaging technology. METHODS: The device is equipped with four different LED light sources (VIS, 810 nm, 850 nm, and 940 nm) for illumination. Based on a diffractive optical element (DOE) combined with a CMOS sensor chip, a snapshot hyperspectral imager is achieved for the application on human skin. The diffractive optical element (DOE) consists of a two‐dimensional array of identically repeated diffractive microstructures. One hyperspectral image for all wavelength regions is taken within a few seconds. Complex recalculation of the VIS spectral distribution and image information from the received DOE image requires several minutes, depending on computing performance. A risk assessment on the irradiation sources shows no risk of harm due to the LED radiation. RESULTS: Skin tone color patches experiments reproducibly deliver images and spectra of different skin tones. First in vivo use of the device identified pigmentation changes within the field of view. CONCLUSION: We present a working mobile snapshot hyperspectral imaging tool based on diffractive optical elements. This device or future developments thereof can be used for broad skin evaluation in vivo. |
---|