Cargando…
Axon regeneration after optic nerve injury in rats can be improved via PirB knockdown in the retina
BACKGROUND: In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) exert major inhibitory effects on nerve regeneration: Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). MAIs have two co-receptors, Nogo receptor (NgR) and...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359350/ https://www.ncbi.nlm.nih.gov/pubmed/34380548 http://dx.doi.org/10.1186/s13578-021-00670-w |
Sumario: | BACKGROUND: In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) exert major inhibitory effects on nerve regeneration: Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). MAIs have two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Existing studies confirm that inhibiting NgR only exerted a modest disinhibitory effect in CNS. However, the inhibitory effects of PirB on nerve regeneration after binding to MAIs are controversial too. We aimed to further investigate the effect of PirB knockdown on the neuroprotection and axonal regeneration of retinal ganglion cells (RGCs) after optic nerve injury in rats. METHODS: The differential expression of PirB in the retina was observed via immunofluorescence and western blotting after 1, 3, and 7 days of optic nerve injury (ONI). The retina was locally transfected with adeno-associated virus (AAV) PirB shRNA, then, the distribution of virus in tissues and cells was observed 21 days after AAV transfection to confirm the efficiency of PirB knockdown. Level of P-Stat3 and expressions of ciliary neurotrophic factor (CNTF) were detected via western blotting. RGCs were directly labeled with cholera toxin subunit B (CTB). The new axons of the optic nerve were specifically labeled with growth associated protein-43 (GAP43) via immunofluorescence. Flash visual evoked potential (FVEP) was used to detect the P1 and N1 latency, as well as N1-P1, P1-N2 amplitude to confirm visual function. RESULTS: PirB expression in the retina was significantly increased after ONI. PirB knockdown was successful and significantly promoted P-Stat3 level and CNTF expression in the retina. PirB knockdown promoted the regeneration of optic nerve axons and improved the visual function indexes such as N1-P1 and P1-N2 amplitude. CONCLUSIONS: PirB is one of the key molecules that inhibit the regeneration of the optic nerve, and inhibition of PirB has an excellent effect on promoting nerve regeneration, which allows the use of PirB as a target molecule to promote functional recovery after ONI. |
---|