Cargando…

Pharmacological validation of TDO as a target for Parkinson’s disease

Parkinson’s disease patients suffer from both motor and nonmotor impairments. There is currently no cure for Parkinson’s disease, and the most commonly used treatment, levodopa, only functions as a temporary relief of motor symptoms. Inhibition of the expression of the L‐tryptophan‐catabolizing enzy...

Descripción completa

Detalles Bibliográficos
Autores principales: Perez‐Pardo, Paula, Grobben, Yvonne, Willemsen‐Seegers, Nicole, Hartog, Mitch, Tutone, Michaela, Muller, Michelle, Adolfs, Youri, Pasterkamp, Ronald Jeroen, Vu‐Pham, Diep, van Doornmalen, Antoon M., van Cauter, Freek, de Wit, Joeri, Gerard Sterrenburg, Jan, Uitdehaag, Joost C.M., de Man, Jos, Buijsman, Rogier C., Zaman, Guido J.R., Kraneveld, Aletta D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359396/
https://www.ncbi.nlm.nih.gov/pubmed/33471408
http://dx.doi.org/10.1111/febs.15721
Descripción
Sumario:Parkinson’s disease patients suffer from both motor and nonmotor impairments. There is currently no cure for Parkinson’s disease, and the most commonly used treatment, levodopa, only functions as a temporary relief of motor symptoms. Inhibition of the expression of the L‐tryptophan‐catabolizing enzyme tryptophan 2,3‐dioxygenase (TDO) has been shown to inhibit aging‐related α‐synuclein toxicity in Caenorhabditis elegans. To evaluate TDO inhibition as a potential therapeutic strategy for Parkinson’s disease, a brain‐penetrable, small molecule TDO inhibitor was developed, referred to as NTRC 3531‐0. This compound potently inhibits human and mouse TDO in biochemical and cell‐based assays and is selective over IDO1, an evolutionary unrelated enzyme that catalyzes the same reaction. In mice, NTRC 3531‐0 increased plasma and brain L‐tryptophan levels after oral administration, demonstrating inhibition of TDO activity in vivo. The effect on Parkinson’s disease symptoms was evaluated in a rotenone‐induced Parkinson’s disease mouse model. A structurally dissimilar TDO inhibitor, LM10, was evaluated in parallel. Both inhibitors had beneficial effects on rotenone‐induced motor and cognitive dysfunction as well as rotenone‐induced dopaminergic cell loss and neuroinflammation in the substantia nigra. Moreover, both inhibitors improved intestinal transit and enhanced colon length, which indicates a reduction of the rotenone‐induced intestinal dysfunction. Consistent with this, mice treated with TDO inhibitor showed decreased expression of rotenone‐induced glial fibrillary acidic protein, which is a marker of enteric glial cells, and decreased α‐synuclein accumulation in the enteric plexus. Our data support TDO inhibition as a potential therapeutic strategy to decrease motor, cognitive, and gastrointestinal symptoms in Parkinson’s disease.