Cargando…

Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems

Current knowledge gaps on tendon tissue healing can partly be ascribed to the limited availability of physiologically relevant culture models. An unnatural extracellular matrix, high serum levels and random cell morphology in vitro mimic strong vascularization and lost cell elongation in pathology,...

Descripción completa

Detalles Bibliográficos
Autores principales: van Vijven, Marc, Wunderli, Stefania L., Ito, Keita, Snedeker, Jess G., Foolen, Jasper
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359397/
https://www.ncbi.nlm.nih.gov/pubmed/32478872
http://dx.doi.org/10.1002/jor.24761
_version_ 1783737540866473984
author van Vijven, Marc
Wunderli, Stefania L.
Ito, Keita
Snedeker, Jess G.
Foolen, Jasper
author_facet van Vijven, Marc
Wunderli, Stefania L.
Ito, Keita
Snedeker, Jess G.
Foolen, Jasper
author_sort van Vijven, Marc
collection PubMed
description Current knowledge gaps on tendon tissue healing can partly be ascribed to the limited availability of physiologically relevant culture models. An unnatural extracellular matrix, high serum levels and random cell morphology in vitro mimic strong vascularization and lost cell elongation in pathology, and discord with a healthy, in vivo cell microenvironment. The thereby induced phenotypic drift in tendon‐derived cells (TDCs) compromises the validity of the research model. Therefore, this research quantified the extracellular matrix (ECM)‐, serum‐, and cell morphology‐guided phenotypic changes in tendon cells of whole tendon fascicle explants with intact ECM and TDCs cultured in a controlled microenvironmental niche. Explanted murine tail tendon fascicles were cultured in serum‐rich or serum‐free medium and phenotype was assessed using transcriptome analysis. Next, phenotypic marker gene expression was measured in in vitro expanded murine tail TDCs upon culture in serum‐rich or serum‐free medium on aligned or random collagen I patterns. Freshly isolated fascicles or TDCs served as native controls. In both systems, the majority of tendon‐specific genes were similarly attenuated in serum‐rich culture. Strikingly, 1‐week serum‐deprived culture—independent of cell morphology—converged TDC gene expression toward native levels. This study reveals a dynamic serum‐responsive tendon cell phenotype. Extracting fascicles or TDCs from their native environment causes large changes in cellular phenotype, which can be limited and even reversed by serum deprivation. We conclude that serum‐derived factors override matrix‐integrity and cell morphology cues and that serum‐deprivation stimulates a more physiological microenvironment for in vitro studies.
format Online
Article
Text
id pubmed-8359397
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-83593972021-08-17 Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems van Vijven, Marc Wunderli, Stefania L. Ito, Keita Snedeker, Jess G. Foolen, Jasper J Orthop Res RESEARCH ARTICLES Current knowledge gaps on tendon tissue healing can partly be ascribed to the limited availability of physiologically relevant culture models. An unnatural extracellular matrix, high serum levels and random cell morphology in vitro mimic strong vascularization and lost cell elongation in pathology, and discord with a healthy, in vivo cell microenvironment. The thereby induced phenotypic drift in tendon‐derived cells (TDCs) compromises the validity of the research model. Therefore, this research quantified the extracellular matrix (ECM)‐, serum‐, and cell morphology‐guided phenotypic changes in tendon cells of whole tendon fascicle explants with intact ECM and TDCs cultured in a controlled microenvironmental niche. Explanted murine tail tendon fascicles were cultured in serum‐rich or serum‐free medium and phenotype was assessed using transcriptome analysis. Next, phenotypic marker gene expression was measured in in vitro expanded murine tail TDCs upon culture in serum‐rich or serum‐free medium on aligned or random collagen I patterns. Freshly isolated fascicles or TDCs served as native controls. In both systems, the majority of tendon‐specific genes were similarly attenuated in serum‐rich culture. Strikingly, 1‐week serum‐deprived culture—independent of cell morphology—converged TDC gene expression toward native levels. This study reveals a dynamic serum‐responsive tendon cell phenotype. Extracting fascicles or TDCs from their native environment causes large changes in cellular phenotype, which can be limited and even reversed by serum deprivation. We conclude that serum‐derived factors override matrix‐integrity and cell morphology cues and that serum‐deprivation stimulates a more physiological microenvironment for in vitro studies. John Wiley and Sons Inc. 2020-06-10 2021-07 /pmc/articles/PMC8359397/ /pubmed/32478872 http://dx.doi.org/10.1002/jor.24761 Text en © 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle RESEARCH ARTICLES
van Vijven, Marc
Wunderli, Stefania L.
Ito, Keita
Snedeker, Jess G.
Foolen, Jasper
Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems
title Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems
title_full Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems
title_fullStr Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems
title_full_unstemmed Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems
title_short Serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems
title_sort serum deprivation limits loss and promotes recovery of tenogenic phenotype in tendon cell culture systems
topic RESEARCH ARTICLES
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359397/
https://www.ncbi.nlm.nih.gov/pubmed/32478872
http://dx.doi.org/10.1002/jor.24761
work_keys_str_mv AT vanvijvenmarc serumdeprivationlimitslossandpromotesrecoveryoftenogenicphenotypeintendoncellculturesystems
AT wunderlistefanial serumdeprivationlimitslossandpromotesrecoveryoftenogenicphenotypeintendoncellculturesystems
AT itokeita serumdeprivationlimitslossandpromotesrecoveryoftenogenicphenotypeintendoncellculturesystems
AT snedekerjessg serumdeprivationlimitslossandpromotesrecoveryoftenogenicphenotypeintendoncellculturesystems
AT foolenjasper serumdeprivationlimitslossandpromotesrecoveryoftenogenicphenotypeintendoncellculturesystems