Cargando…

Thermal effects of percutaneous application of plasma/radiofrequency energy on porcine dermis and fibroseptal network

BACKGROUND: Skin laxity is one of the defining characteristics of aging and can be the result of various factors including intrinsic aging, genetics, diet, stress, lifestyle, sun exposure, weight fluctuations, and smoking. Recent reports suggest the ability of subdermal energy application to reduce...

Descripción completa

Detalles Bibliográficos
Autor principal: Ruff, Paul G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359425/
https://www.ncbi.nlm.nih.gov/pubmed/33197275
http://dx.doi.org/10.1111/jocd.13845
Descripción
Sumario:BACKGROUND: Skin laxity is one of the defining characteristics of aging and can be the result of various factors including intrinsic aging, genetics, diet, stress, lifestyle, sun exposure, weight fluctuations, and smoking. Recent reports suggest the ability of subdermal energy application to reduce skin laxity. Thermal energy can be delivered using different devices including lasers, radiofrequency (RF) monopolar and bipolar devices, and plasma/RF devices. Plasma‐based energy platforms generate a plasma gas, allowing heat to be applied to the tissue. This study focused on the evaluation of thermal effect of plasma/RF compared to a monopolar RF device applied percutaneously to the subdermis and connective fibroseptal network in a porcine model. METHODS: The subdermal application of energy was conducted using a plasma/RF system and a monopolar RF system. Both low and high energy/temperature settings were evaluated in dynamic and stationary modes. Histomorphometry was used to determine the depth of thermal effect associated with each treatment setting. RESULTS: Both dermis and fibroseptal network tissue exhibited the presence of microscopically thermally treated zones. There were no significant differences in average and maximum depths of thermal effect between the different handpieces and electrosurgical systems used for all treatment settings. CONCLUSIONS: No significant differences in the thermal effect between plasma/RF and monopolar RF systems were observed, suggesting that plasma/RF systems can be safely used for the percutaneous application of energy in the subcutaneous space.