Cargando…
dSPIC: a deep SPECT image classification network for automated multi-disease, multi-lesion diagnosis
BACKGROUND: Functional imaging especially the SPECT bone scintigraphy has been accepted as the effective clinical tool for diagnosis, treatment, evaluation, and prevention of various diseases including metastasis. However, SPECT imaging is brightly characterized by poor resolution, low signal-to-noi...
Autores principales: | Lin, Qiang, Cao, Chuangui, Li, Tongtong, Man, Zhengxing, Cao, Yongchun, Wang, Haijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359584/ https://www.ncbi.nlm.nih.gov/pubmed/34380441 http://dx.doi.org/10.1186/s12880-021-00653-w |
Ejemplares similares
-
Deep learning based automated diagnosis of bone metastases with SPECT thoracic bone images
por: Lin, Qiang, et al.
Publicado: (2021) -
Multiclass classification of whole‐body scintigraphic images using a self‐defined convolutional neural network with attention modules
por: Lin, Qiang, et al.
Publicado: (2021) -
Deep learning based automatic segmentation of metastasis hotspots in thorax bone SPECT images
por: Lin, Qiang, et al.
Publicado: (2020) -
Automated detection of lung cancer-caused metastasis by classifying scintigraphic images using convolutional neural network with residual connection and hybrid attention mechanism
por: Guo, Yanru, et al.
Publicado: (2022) -
Semi-supervised segmentation of metastasis lesions in bone scan images
por: Lin, Qiang, et al.
Publicado: (2022)