Cargando…
Benchmarking deep learning splice prediction tools using functional splice assays
Hereditary disorders are frequently caused by genetic variants that affect pre‐messenger RNA splicing. Though genetic variants in the canonical splice motifs are almost always disrupting splicing, the pathogenicity of variants in the noncanonical splice sites (NCSS) and deep intronic (DI) regions ar...
Autores principales: | Riepe, Tabea V., Khan, Mubeen, Roosing, Susanne, Cremers, Frans P. M., 't Hoen, Peter A. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360004/ https://www.ncbi.nlm.nih.gov/pubmed/33942434 http://dx.doi.org/10.1002/humu.24212 |
Ejemplares similares
-
Identification of splice defects due to noncanonical splice site or deep‐intronic variants in ABCA4
por: Fadaie, Zeinab, et al.
Publicado: (2019) -
An expanded phenotype centric benchmark of variant prioritisation tools
por: Anderson, Denise, et al.
Publicado: (2022) -
Minigene-Based Splice Assays Reveal the Effect of Non-Canonical Splice Site Variants in USH2A
por: Reurink, Janine, et al.
Publicado: (2022) -
Benchmarking splice variant prediction algorithms using massively parallel splicing assays
por: Smith, Cathy, et al.
Publicado: (2023) -
PlasmoFAB: a benchmark to foster machine learning for Plasmodium falciparum protein antigen candidate prediction
por: Ditz, Jonas C, et al.
Publicado: (2023)