Cargando…
A new regression model for overdispersed binomial data accounting for outliers and an excess of zeros
Binary outcomes are extremely common in biomedical research. Despite its popularity, binomial regression often fails to model this kind of data accurately due to the overdispersion problem. Many alternatives can be found in the literature, the beta‐binomial (BB) regression model being one of the mos...
Autores principales: | Ascari, Roberto, Migliorati, Sonia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360060/ https://www.ncbi.nlm.nih.gov/pubmed/33960503 http://dx.doi.org/10.1002/sim.9005 |
Ejemplares similares
-
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
Spatial Scan Statistics for Models with Excess Zeros and Overdispersion
por: de Lima, Max Sousa, et al.
Publicado: (2013) -
A New Regression Model for the Analysis of Overdispersed and Zero-Modified Count Data
por: Bertoli, Wesley, et al.
Publicado: (2021) -
Pooling overdispersed binomial data to estimate event rate
por: Young-Xu, Yinong, et al.
Publicado: (2008) -
A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution
por: Harrison, Xavier A.
Publicado: (2015)