Cargando…
Penalized estimation of the Gaussian graphical model from data with replicates
Gaussian graphical models are usually estimated from unreplicated data. The data are, however, likely to comprise signal and noise. These two cannot be deconvoluted from unreplicated data. Pragmatically, the noise is then ignored in practice. We point out the consequences of this practice for the re...
Autores principales: | van Wieringen, Wessel N., Chen, Yao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360145/ https://www.ncbi.nlm.nih.gov/pubmed/33987868 http://dx.doi.org/10.1002/sim.9028 |
Ejemplares similares
-
Analysis of Twitter data with the Bayesian fused graphical lasso
por: Aflakparast, Mehran, et al.
Publicado: (2020) -
Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model
por: Ma, Jing
Publicado: (2020) -
Joint estimation of multiple dependent Gaussian graphical models with
applications to mouse genomics
por: Xie, Yuying, et al.
Publicado: (2016) -
Joint conditional Gaussian graphical models with multiple sources of genomic data
por: Chun, Hyonho, et al.
Publicado: (2013) -
Regularized estimation of large-scale gene association networks using graphical Gaussian models
por: Krämer, Nicole, et al.
Publicado: (2009)