Cargando…
Graph Neural Networks and Their Current Applications in Bioinformatics
Graph neural networks (GNNs), as a branch of deep learning in non-Euclidean space, perform particularly well in various tasks that process graph structure data. With the rapid accumulation of biological network data, GNNs have also become an important tool in bioinformatics. In this research, a syst...
Autores principales: | Zhang, Xiao-Meng, Liang, Li, Liu, Lin, Tang, Ming-Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360394/ https://www.ncbi.nlm.nih.gov/pubmed/34394185 http://dx.doi.org/10.3389/fgene.2021.690049 |
Ejemplares similares
-
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Application of Multilayer Network Models in Bioinformatics
por: Lv, Yuanyuan, et al.
Publicado: (2021) -
Bioinformatic workflow fragment discovery leveraging the social-aware knowledge graph
por: Diao, Jin, et al.
Publicado: (2022) -
Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA–Disease Associations Based on Multi-Source Data
por: Li, Guanghui, et al.
Publicado: (2022) -
GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions
por: He, Jie, et al.
Publicado: (2022)